APJ ABDULKALAM TECHNOLOGICAL UNIVERSITY **08 PALAKKAD CLUSTER**

Q. P. Code : CES0819222-I

(Pages: 3)

Name: Reg. No

SECOND SEMESTER M.TECH. DEGREE EXAMINATION APRIL 2019

Branch: Electronics & Communication Engineering Specialization: Communication **Engineering & Signal Processing**

08EC 6222 ESTIMATION & DETECTION

Time: 3 hours

Max. Marks: 60

Answer all six questions.

Modules 1 to 6: Part 'a' of each question is compulsory and answer either part 'b' or part 'c' of each question.

Q.no.

Module 1

1.a Determine the Maximum-Likelihood decision rule associated with the following messages.

m₁:
$$p(z/m_1) = \frac{1}{\sqrt{2\pi}} \exp(\frac{z^2}{2})$$

m₂: $p(z/m_2) = \frac{1}{2\sqrt{2\pi}} \exp(\frac{z^2}{8})$

Answer b or c

b State and explain MAP Decision criterion.

c Determine the decision rule associated with the following conditional probabilities:

$$\begin{array}{ll} m_1: & p(z/m_1) = \begin{cases} e^{-z} & for \ z \geq 0 \\ 0 & othrewise \end{cases} \\ m_2: & p(z/m_2) = \begin{cases} e^{z-1} for \ z \leq 1 \\ 0 & othrewise \end{cases}$$

with $P{m_1} = 0.5$, $P{d_2 | m_1} = 0.1$ using

(1) Neyman-Pearson criterion

(2) Probability of error criterion.

Marks

3

6

6

Module 2

Q.no.

Q.no.

2.a State and explain MIN-MAX Criterion.

Answer b or c

b Determine the Baye's decision rule associated with the following conditional probabilities:

m₁:
$$p(z/m_1) = \frac{1}{2}e^{-|z|}$$

m₂: $p(z/m_2) = e^{-2|z|}$

The costs are given by $C_{11} = C_{22} = 0$; $C_{12} = 1$; $C_{21} = 2$ and $P\{m_2\} = 0.75$.

c Explain BAYES RISK criterion with example.

Module 3

3.a Write a short note on Integrating optimum receiver.

- Answer b or c
- **b** If the observation is formed by adding an independent zero-mean, unitvariance Gaussian random variable to each component of the signal vector : z = s + n, where n and s are I-dimensional vectors and

$$s_{1} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \text{ and } s_{2} = \begin{bmatrix} s_{1} \\ s_{1} \\ \vdots \\ s_{1} \\ \vdots \\ s_{1} \end{bmatrix}$$

Obtain an optimum decision for this problem. Find the expression for sufficient statistic l(z) and the decision region.

c With neat block diagram, explain matched filter receiver.

Q.no.

Module 4

Marks

3

6

4.a State and explain Baye's estimation criterion.

Answer b or c

b Obtain an expression for linear minimum variance estimator θ_{LMV} for the two dimensional observation of a scalar parameter given by

$$Z = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \theta + \begin{bmatrix} n_1 \\ n_1 \end{bmatrix}$$

where the statistical parameters are $\mu_{\theta}=0$; $V_{\theta}=V$; $\mu_n=0$; $V_n==\sigma^2 I$.

2

6

Marks

3

6

Marks

3

6

6

c Briefly explain linear mean squares method.

Q.no.	Module 5	Marks
5.a	Explain maximum likelihood estimation.	4
	Answer b or c	
b	Develop a linear unbiased minimum error variance algorithm for state	8
	estimation for the given vector equation	
	$X(k+1) = \phi(k+1) x(k) + \Gamma(k)w(k)$	
	w(k) is the input noise and zero mean white noise process with co-	à.
	variance cov $\{w(k), w(j)\} = V_w(k)S_k(k-j)$	-
C	Show that for any unbiased estimator of a scalar θ , the conditional variance is bounded by	8
	$\operatorname{var}\{\widehat{\theta} \mid \theta\} \geq (\{E\partial \mid \partial\theta (\ln p(z/\theta))\}^2)^{-1}$	
	Define an efficient estimate. Prove that the maximum likelihood estimate for the parameter θ from the set of observations	
	$Z_i = \theta + n_i$ i=1,2,3,I	
	n's are identically distributed Gaussian random variable with zero mean and σ^2 variance.	
Q.no.	Module 6	Marks

6

6	.a	What is concept of sufficient statistics?	4
		Answer b or c	
	b	Briefly explain minimum variance unbiased estimation.	8
	С	Write short note on sensitivity and error analysis.	8

3