APJ ABDULKALAM TECHNOLOGICAL UNIVERSITY 08 PALAKKAD CLUSTER

Q. P. Code : 08CSE19-6022-1

(Pages: 3)

SECOND SEMESTER M. TECH. DEGREE EXAMINATION MAY 201

Branch: Computer Science and Engineering Specialization: Computer Science and Engineering 08CS 6022 INFORMATION RETRIEVAL

(Common to CSE)

Time:3 hours

Answer all six questions.

Modules 1 to 6: Part 'a' of each question is compulsory and answer either part 'b' or part 'c' of each question.

Q.no.

Module 1

1.a Compare the process of data retrieval and information retrieval.

Answer b or c

b Write note on Recall and Precision for retrieval performance evaluation. Explain with a simple example why Recall or Precision alone is not enough to quantify the performance of IR System. Explain any two alternative measures which combine recall and precision to get a better performance evaluation.

c Describe the Retrieval process with simple, generic software architecture.

Q.no

Module 2

2.a Explain how Euclidean distance function and cosine similarity can be used as similarity measures. Will a document pair found 'similar' with cosine similarity measure be similar with distance function similarity measure? Justify your answer with a suitable example.

Answer b or c

- **b** Write note on Boolean and Vector classical models for information retrieval. What are the advantages of vector model over Boolean model.
- C Explain the classic probabilistic model. What are the advantages and **6**. disadvantages of this model?

Q.no.

Module 3

3.a Discuss Page Ranking.

Answer b or c

1

Marks

3

Marks 3

6

Max. marks: 60

- 6
- Marks

3

6

- Write note on the User Relevance Feedback strategy for query reformulation. Explain the process of Query Expansion and Term Reweighting for vector model.
- c Write note on the process of query expansion through Local Clustering. Explain 6 three cluster building strategies for local clustering in detail (association clusters, metric clusters, and scalar clusters).

Module 4

Marks

Marks

6

4.a Write note on two type of multimedia similarity queries *Whole Match* and *Sub-* **3** *pattern Match* queries with example.

Answer b or c

- **b** Why we need spatial access methods instead of sequential scanning to access **6** multimedia objects? Explain GEMINI algorithm (Explain each step).
- c What do you mean by *curse of dimensionality*? Discuss the difference between 6 feature selection and feature extraction with example. How do these two process contribute to dimensionality reduction?

Q.no.

Q.no.

5.a Discuss steps involved in decision tree classification process with a simple **4** example .List its advantages and disadvantages.

Answer b or c

Module 5

b Discuss k-NN and Naive Bayes classification. In the figure given below two types of two-dimensional data distributions are given. One is linearly separable and other is linearly non-separable. You are asked to select a classifier from kNN and Naive Bayes for each of data distribution. Justify your selection.

c Explain Naive Bayes classifier. With Naive Bays classifier and data given in table below compute P(Yes|x'), P(No|x') for the unseen data x'=(Outlook=Sunny, Temperature=Cool, Humidity=High, Wind=Strong). How will you interpret the result?

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

PlayTennis: training examples

Q.no.

Module 6

Marks

8

8

6.a Write note on Recommender Systems and its applications.

Answer b or c

- **b** Explain K-Means clustering algorithm. Do think k-means clustering is a special case of hard EM(Expectation Maximization).Justify your answer. List advantages and disadvantages of k-means clustering. Analyse the time complexity of K-Means clustering.
- c Explain process of Hierarchical agglomerative clustering with a suitable example. How it is different from divisive approach? Analyse its time complexity.