Reg No.: \qquad Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FOURTH SEMESTER B.TECH DEGREE EXAMINATION(R\&S), MAY 2019

Course Code: CE206
 Course Name: FLUID MECHANICS II (CE)

Max. Marks: 100
Duration: 3 Hours

Assume any missing data suitably.

PART A
Answer any two full questions, each carries 15 marks. Marks
1 a) Show that the maximum efficiency of a jet striking normally on a series of flat plates arranged over the periphery of a runner is 50%.
b) A Kaplan turbine develops 15000 kW power at a head of 30 m . The diameter of the boss is 0.35 times the diameter of the runner. Assuming a speed ratio of 2, a flow ratio of 0.65 and an overall efficiency of 90% calculate the diameter of the runner and the rotational speed.
c) Why the suction lift of a centrifugal pump cannot exceed a certain limit?

2 a) A jet of water having a velocity of $35 \mathrm{~m} / \mathrm{s}$ impinges without shock on a series of vanes moving at $20 \mathrm{~m} / \mathrm{s}$. The jet angle at inlet is 30° and jet angle at exit is 60°. Find: (a) vane angles at entrance and exit (b) work done on vanes per unit weight of water supplied by the jet; and (c) the hydraulic efficiency.
b) A Pelton turbine is to operate under a net head of 500 m at 420 rpm . If a single jet with diameter 18 cm is used, find the specific speed of the machine. Take C_{v} as 0.98 and overall efficiency as 0.85 .
3 a) Derive an expression for the specific speed of a centrifugal pump.
b) A centrifugal pump discharges $0.2 \mathrm{~m}^{3} / \mathrm{s}$ of water at a head of 25 m when running at a speed of 1400 rpm . The manometric efficiency is 80%. If the impeller has an outer diameter of 30 cm and width of 5 cm , determine the vane angle at the outlet.
c) Define the term, Net Positive Suction Head.

PART B

Answer any two full questions, each carries 15 marks.
4 a) Define the terms: i) wetted Perimeter, ii) Hydraulic depth and iii) Hydraulic radius.
b) A trapezoidal channel discharging water at the rate of $150 \mathrm{~m}^{3} / \mathrm{s}$ is to be designed for most economical section. Find the bottom width of the channel and depth of
water. The side slope is 45°. Take bed slope is 1 in 1000 and Chezy's constant as 50.
b) In a hydraulic jump on a horizontal rectangular channel the Froude number

- before the jump is 10 and energy loss during the jump is 4 m . Find i) depths before and after the jump, ii) the discharge per unit width and iii) Froude no after the jump.

6 a) Define the terms: i) conveyance of a channel section ii) normal depth.
b) A rectangular channel has a width of 1.8 m and carries a discharge of $1.8 \mathrm{~m}^{3} / \mathrm{s}$ at a depth of 0.2 m . Calculate i) specific energy ii) depth alternate to the existing depth and iii) Froude numbers at the alternate depths.

PART C

Answer any two full questions, each carries 20 marks.
7 a) Derive the dynamic equation for gradually varied flow, stating the assumptions involved.
b) A trapezoidal channel with 6 m bottom width and side slope 2 horizontal to 1 vertical having a bed slope of 0.0016 carries $10 \mathrm{~m}^{3} / \mathrm{s}$ of water. The dam along the way of the channel rises the water depth by 2 m behind the dam. Decide the nature of channel and type of profile of water. Take Manning's coefficient as 0.025
a) The resistance force F of a ship is a function of length L, velocity V, gravitational acceleration g , density ρ and viscosity μ. Develop a functional relationship in terms of non-dimensional numbers using Buckingham π theorem.
b) Explain the different types of similarities to be ensured between the model and prototype.
c) Explain the Froude model law.
a) Find the slope of free water surface of a rectangular stream 20 m wide at a section 3 m deep. The slope of the bed of stream is 1 in 5000 . Total discharge is $25 \mathrm{~m}^{3} / \mathrm{s}$. Assume Chezy's constant C as 55 . State whether water surface will fall or rise.
b) A 1:5 scale model of a car is tested in wind tunnel. The velocity of prototype is $75 \mathrm{~km} / \mathrm{h}$. The model drag is 300 N . Find out the drag and power required for the prototype. The air used is same in model and prototype.
c) Differentiate between backwater curve and drawdown curve.

