Pages: 3

Reg No.:_____

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIRST/SECOND SEMESTER B.TECH DEGREE EXAMINATION, MAY 2019

Course Code: CY100

•	Course Name: ENGINEERING CHEMISTRY	
Max. Marks: 100 Duration: 3 H		3 Hours
1	PART A Answer all questions, each carries 2 marks. CHCl ₃ protons show a shift in frequency of 728 Hz from TMS signal in a	Marks (2)
	100MHz NMR instrument, How much would be the shift in frequency for the	
	same proton from TMS in a 300 MHz NMR instrument?	
2	If you take a mixture of ZnSO ₄ and CuSO ₄ solutions in a beaker and a Zinc rod	(2)
	and a Copper rod are inserted in it will you get electricity? Give the reason.	
3	Explain partition chromatography	(2)
4	What are Carbon nanotubes?	(2)
5	Arrange n-heptane, isooctane, benzene, branched alkanes in increasing order of	(2)
	knocking tendency in petrol engine.	
6	Oils having high viscosity need not be having high viscosity index. Comment.	(2)
7	A water sample contains 204 mg of CaSO ₄ per litre. Calculate its hardness in	(2)
	terms of CaCO ₃ equivalents.	
8	Define reverse osmosis.	(2)
	PART B	
9	Answer all questions, each carries 3 marks. What interpretations are obtained from the chemical shifts in a molecule?	(3)
10	A Zn rod is dipped in 0.4 M CuSO ₄ solution, displacement reaction takes place	(3)
	and allowed to attain equilibrium. Calculate the equilibrium constant and [Cu ²⁺]	
	at equilibrium. Given that $E^0_{Cu2+/Cu} = +0.34V$ and $E^0_{Zn2+/Zn} = -0.76V$	
11	Write the major applications of DTA.	(3)
12	What are co-polymers? Illustrate with addition co-polymer and condensation	(3)
	co-polymer.	
13	Describe with the significance: i) cloud and pour points ii) Flash and fire	(3)
	points.	
14	What is mean by aniline point? How is it determined?	(3)
15	How is the exhausted resin regenerated from an ion-exchange process?	(3)
16	What is disinfection? How is it carried out using (a) UV light and (b)	(3)

Chlorination?

PART C

17	a)	Answer all questions, each carries 10 marks. Discuss the factors affecting chemical shift.	(5
	b)	Draw the instrumentation of UV-visible spectrometer, explain the various parts.	(5
		OR	
18	a)	How will you distinguish the isomers of C ₄ H ₁₀ using NMR spectroscopy?	(5
	b)	Calculate the force constant of HF molecule, if it shows IR absorption at 4138	(5
		cm ⁻¹ . Given that atomic masses of hydrogen and fluorine are 1u and 19u	
		respectively. What would be the wavenumber if hydrogen atoms are replaced	
		by deuterium atoms?	
19	a)	What are the various types of electrodes?	(5
	b)	Calculate the single electrode potentials of H ₂ electrode at 25 °C and 1 atm	(5
		pressure when the solution has pH=0 and pH =14. Based on this which metal	
		(Al or Fe) can liberate H2 only from acids? Which metal can liberate H2 from	
		both acid and alkali? Given that E^0 $Fe^{2+}/Fe=$ - 0.44 V and E^0 $Al^{3+}/Al=$ - 1.66 V .	
		OR	
20	a)	Disuses the variation in emf of a Daniel cell with respect to temperature at	(5
		different concentration ratios of Zn ²⁺ and Cu ²⁺	
	b)	A cell reaction is given by A+ B ⁿ⁺ \rightarrow A ⁿ⁺ + B Calculate the E ⁰ cell and number	(5)
		of electrons n involved in cell reaction. Given that concentration ratio of A ⁿ⁺ to	
		B^{n+} is 0.1 and the cell shows an emf of 1.13006 V at 30 °C and 1.1.3105 V at	
		40 °C.	
21	a)	Make a comparison between GSC and GLC.	(5)
	b)	Discuss the terms i) Carrier gas ii) columns iii) stationary phase iv) detectors	(5)
		OR	
22	a)	Write down the experimental procedures for the measurement of conductivity.	(4)
	b)	Describe the terms i) cell constant ii) specific conductance iii) conductivity cell	(6)
23	a)	What is poly pyrrole? How will you synthesise it?	(6)
	b)	Which kind of doping is possible (p or n) in poly pyrrole why? Give two	(4)
		properties and applications.	
		OR	
24	a)	What is ABS? What are its important properties and applications?	(6)

OR

(5)

(5)

28 a) Discuss the steps involved in sewage water treatment. (5)

b) Explain the working of trickling filter process with a neat labelled sketch.

incubation was 3.2 ppm. Find the BOD of the sewage water.

Compare aerobic and anaerobic oxidation of sewage water.
