A1101

Reg No.:

A

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY HURUN SECOND SEMESTER B.TECH DEGREE EXAMINATION (R & S), MAY 2019

Name:

Course Code: MA102

Course Name: DIFFERENTIAL EQUATIONS

Max. Marks: 100

Duration: 3 Hours

PART A Answer all questions, each carries 3 marks

	1	Find the general solution of $\frac{d^3y}{dx^3} + y = 0$	(3)
	2	Find the Wronskian of $e^x \cos 2x$ and $e^x \sin 2x$	(3)
	3	Find the Particular Integral of $y'' - 4y' - 5y = 4 \cos 2x$.	(3)
	4	Find the particular integral of $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = \sinh 2x$	(3)
•	5	Evaluate the coefficient a_n in the Fourier series expansion for $f(x) = \sin x $ in	(2)
		$-\pi < x < \pi$	(3)
	6	Find the half range Fourier sine series representation of $f(x) = k$ in $(0,\pi)$	(3)
	7	Find the partial differential equation of all spheres having their centre lies on z-	(3)
		axis.	
	8	Form the partial differential equation of $z = f(\frac{xy}{z})$ by eliminating the arbitrary	(3)
		function f.	
	9	Solve $\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y}$, $u(0,y) = 8e^{-3y}$, using the method of separation of variables.	(3)
	10	A tightly stretched string of length l is fixed at both ends and pulled from its mid	
	•	point to a height h and realised from rest from this position. Write down the	(3)
		initial and boundary conditions.	
	11	Find the steady state temperature distribution in a rod of length 30 cm, if the ends	(3)
	*1 5	of the rod are kept at $20^{\circ}C$ and $80^{\circ}C$	(3)
	12	Write down the three possible solutions of the one dimensional heat equation.	(3)
	Carrier Constanting State		

A1101

PART B

Inswer six questions, or	ne full o	question	from	each	module
--------------------------	-----------	----------	------	------	--------

		Answer six questions,one full question from each module Module 1	
13	a)	Solve the initial value problem $y'' + 4y' + 5y = 0$, $y(0) = 2$, $y'(0) = -5$.	(6)
•	· b)	Find the general solution of the differential equation $y''' - y'' + 4y' = 0$	(5)
		OR	
14	a)	If $y_1(x) = x$ is a solution to the differential equation	
		$(1+x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + 2y = 0$, find the general solution.	(6)
	b)	Solve the ordinary differential equation $y''' - 3y'' - 4y' + 6y = 0$.	(5)
0		· Module 1I	
15	a)	Solve $2(3x+1)^2 \frac{d^2y}{dx^2} + 21(3x+1)\frac{dy}{dx} + 18y = 9x$	(6)
	b)	Solve $(D^4 + 2D^2 + 1)y = x^4$	(5)
		OR	
16	a)	Use method variation of parameters to solve $\frac{d^2y}{dx^2} + 4y = \tan 2x$	(6)
	b)	Solve $(D^2 - 4D + 4)y = sin^2 x$	(5)
		Module 1II	
17	a) -	Obtain the half range Fourier cosine series expansion of $f(x) = x \sin x$ in $(0,\pi)$.	(6)
	b)	Find the Fourier series for $f(x) = x , -\pi < x < \pi$	(5)
		OR	
18.	a)	Find the Fourier series for $f(x) = \begin{cases} 0, -\pi < x < 0 \\ \pi, 0 < x < \pi \end{cases}$	(6)
	b)	Find the Fourier series of the periodic function $f(x)$ of period 4, where	
		$f(x) = \begin{cases} 0, -2 < x \le -1 \\ k, -1 < x < 1 \\ 0, 1 \le x < 2 \end{cases}$	(5)
10		Module 1V	
19	a)	Solve $\frac{y^2z}{x}p + xzq = y^2$	(6)
	b)	Find the partial differential equation of all planes which are at a constant distance	(5)
		k from the origin.	(5)
		OR	
20	a)	Solve $x^{2}(y-z)p + y^{2}(z-x)q = z^{2}(x-y)$	(6)

Page 2 of 3

A

b) Solve $(D^2 + 3DD' + 2D'^2)z = x^2y^2$

Module V

A string is stretched between two fixed points at a distance of 60 cm and the points of the string are given initial velocities where

 $v = \begin{cases} \frac{\lambda x}{30}, \ 0 < x < 30\\ \frac{\lambda}{30}(60 - x), 30 < x < 60 \end{cases}$, x being the distance from an end, find the (10)

Pages: 3

(10)

displacement at any time t.

OR

A uniform elastic string of length 60 cm is subjected to a constant tension of 2 Kg. If the ends are fixed, the initial displacement $u(x,0) = 60x - x^2, 0 < x < 60$ and the initial velocity is zero, find the (10) displacement function u(x,t)

Module VI

Find the temperature distribution in a rod of length 2m whose end points are maintained at temperature $0^{\circ}C$ and the initial temperature is

 $f(x) = 100(2x - x^2), 0 \le x \le 2$

OR

A bar 10 cm long with insulated sides has its ends A and B maintained at $50^{\circ}C$ and $100^{\circ}C$ respectively until steady state conditions prevail. The temperature of A is suddenly raised to $90^{\circ}C$ and at the same time that at B is lowered to $60^{\circ}C$. (10) Find the temperature distribution in the bar at time t.

21

22

23

24