U1128

Pages: 3

APJ ABDUL KALAM TECHNOLOGICAL UN VERSE EIGHT SEMESTER B.TECH (HONS.) EXAMINATION MAY.201

Course code: 08CS6032 Course name:Evolutionary Computing

Max. Marks: 60

Name:....

Duration : 3 Hours

Answer ALL six questions. Part (a) of each question is compulsory.

Answer EITHER part (b) or part (c) of each question.

Q.No.

Marks

3

6

Module I

1a. Illustrate on the features of Evolutionary computing.

Answer b or c

b.Outline the similarities and differences between Genetic Algorithms and Evolutionary Strategies.6

c. With regard to evolutionary strategies what do you understand by the term self-adaptation? 6

Module II

2a. One aspect of a simulated annealing cooling schedule is the temperature. What is the effect of having the starting temperature too high or too low? 3

Answer b or c

. b. Describe the motivation behind the Hill Climbing algorithm .

c. The following table shows six evaluations of a simulated annealing algorithm. For each evaluation give the probability of the next state being accepted. Assume the objective function is being maximised.

No.	Current State (Evaluation)	Potential New State (Evaluation)	Temperature
1	120	50	20
2	120	50	500
3	120	100	20
4	120	100	500
5	120	150	20
6	120	150	500

H2

Module III

3a. Discuss on the variation of Genetic Algorithms

Answer b or c

b.Assume the initial population was $x = \{17, 21, 4 \text{ and } 28\}$. Using one-point crossover, what is the probability of finding the optimal solution? Explain your reasons. **6**

c. Assume we have the following function

$$\mathbf{f}(\mathbf{x}) = \mathbf{x}^3 - 60 * \mathbf{x}^2 + 900 * \mathbf{x} + 100$$

Using a binary representation we can represent x using five binary digits. Given the following four chromosomes give the values for x and f(x).

Chromosome	Binary String	
P ₁	11100	
P ₂	01111	
P ₃	10111	
P ₄	00100	

Module IV

4a. Describe how ants are able to find the shortest path to a food source.

Answer b or c

 \mathbf{b} Using the travelling salesman problem as an example, define the following terms with relation to ant algorithms

Visibility

Evaporation

Transition Probability

c.Many of the search methods presented in the lectures had as their basis some aspect of the real world. Propose an idea for a search algorithm based on some natural process or animal behaviour. Discuss how your method could be realised in a computer implementation in solving, say, the TSP. **6**

Module V

5a. Discuss about Bird flocking its rules, characteristics of Schooling and draw the ranges of behaviour patterns.

4

6

Page 2/3

6

3

b. Explain briefly how Particle Swarm Optimization (PSO) works		
c.Enumerate on Neighbourhood Topologies of PSO		
Module VI		
6a. Write about variations of Artificial bee colony Optimization		
Answer b or c		
b. Describe about Artificial bee colony algorithm		
c. Discuss and relate the behaviour of real bees with computational techniques.		

Answer b or c

Page 3/3