B

-

Reg No :		Name:	
ADI ADUU KALAM TECHNOLOCICAL UNIVERSITY			
FOURTH SEMESTER B.TECH DEGREE EXAMINATION (R&S), MAY 2019			
Course Code: EC212 Course Name: LINEAR INTEGRATED CIRCUITS AND DIGITAL ELECTROXICS			
Max. Marks: 100		arks: 100	Hours
PART A Marks			
1	Lis	t and explain the characteristics of Op-Amp.	(5)
2	Dif	ferentiate between PAL and PLA.	(5)
3	Co	mment on clippers and clampers using Op-Amp IC.	(5)
4	Usi	ng Boolean algebra, verify $AB + \overline{A}C + BC = AB + \overline{A}C$	(5)
5	Ob	tain an expression for first order low pass filter (LPF).	(5)
6	Dra	w the logic diagram of a master- slave J-K flip-flop using NAND gates and	(5)
	Exj	plain how the race around condition is eliminated in it.	
7	Dis	stinguish between half adder and full adder. Give the truth table and logic circuit of	(5)
	hal	f adder and full adder.	
8	De	sign a 4 bit ring counter using JK flip flop and also draw its output waveform.	(5)
PART B			
		Answer any three full questions, each carries 10 marks.	(10)
9		Elucidate in detail the working of a monostable and astable multivibrator using	(10)
		Op-Amp IC 741.	
10	a)	Explain how an Op-Amp works as a differentiator.	(5)
	b)	Interpret the following	(5)
		i)V-I converter with floating load	
		ii) V-I converter with ground load	9
11	a)	How a 4 bit R-2R ladder DAC works?	(5)
	b)	Define A/D converter and explain any one of its type.	(5)
12		Draw the circuit of a Log and Antilog amplifier using Op-Amp and derive its	(10)
		output voltage.	
13		Minimize the following using K-map	
		a) $F(A,B,C,D) = \Sigma (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$	(10)
		b) $F(P,O,R,S) = \pi (3, 5, 7, 8, 10, 11, 12, 13)$	

D1014

(5)

PART C Answer any two full questions, each carries 15 marks.

- 14 a) Implement the following Boolean function $F(A, B, C, D) = \Sigma m (0, 1, 2, 3, 4, 10, (9)$ 11, 14, 15) by using 8X1 multiplexer.
 - b) What is a multiplexer? Draw a logic diagram and logic symbol of a 4 to 1 MUX (6) with the help of truth table.
- 15 Design and implement a 4 bit synchronous up counter by using JK flip flops. (15)
- 16 a) Design and implement a 4 bit binary to gray code converter. (10)
 - b) Design and implement a 3-to-8 decoder.
- 17 a) Design a sequence detector that produces an output '1' whenever the non (10) overlapping sequence 1011 is detected
 - b) Draw a 4 bit binary asynchronous up counter. (5)

Page 2 of 2