| Course Code | Course Name                        | L-T-P-Credits | Year of<br>Introduction |
|-------------|------------------------------------|---------------|-------------------------|
| CE301       | DESIGN OF CONCRETE<br>STRUCTURES I | 3-1-0-4       | 2016                    |

#### Pre-requisites: CE202 Structural Analysis I

#### Course objectives:

- To provide the students with the knowledge of the behavior of reinforced concrete structural elements in flexure, shear, compression and torsion
- To enable them to design essential elements such as beams, columns, slabs staircases and footings under various loads.

#### Syllabus:

Introduction- Limit State method of design- Analysis of singly reinforced rectangular beams- shear strength of RC beam-design of shear reinforcement-bond and development length- curtailment of reinforcement-design of singly reinforced beams-analysis and design of doubly reinforced beams – simply supported , cantilever- analysis of singly reinforced T-beams -design for torsion-design of one-way slab- cantilever slab- continuous slab (detailing only)- two way slabs- design using code coefficients- Limit State of Serviceability-deflection-cracking -Stair cases- design & detailing-Columns-effective length-design of axially loaded short columns with rectangular ties and helical reinforcement.

### **Expected Outcomes:**

The students will be able to

- i. Apply the fundamental concepts of limit state method
- ii. Use IS code of practice for the design of concrete elements
- iii. Understand the structural behavior of reinforced concrete elements in bending, shear, compression and torsion.
- iv. Design beams, slab, stairs, columns and draw the reinforcement details.
- v. Analyze and design for deflection and crack control of reinforced concrete members.

#### **Text Books / References:**

- 1. Pillai S.U & Menon D Reinforced Concrete Design, Tata McGraw Hill Publishing Co., 2005
- 2. Punmia, B. C, Jain A.K and, Jain A.K ,RCC Designs, Laxmi Publications Ltd., 10e, 2015
- 3. Varghese P.C, Limit State Design of Reinforced Concrete, Prentice Hall of India Pvt Ltd,, 2008
- 4. Relevant IS codes (I.S 456, I.S 875, SP 34)

|        | COURSE PLAN                                                                                                                                                                                            |       |                            |  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------|--|
| Module | Contents                                                                                                                                                                                               | Hours | Sem.<br>Exam<br>Marks<br>% |  |
| Ι      | Introduction- Plain and Reinforced concrete- Properties of concrete<br>and reinforcing steel-Objectives of design-Different design<br>philosophies- Working Stress and Limit State methods-Limit State | 9     | 15                         |  |

| me     | ethod of design-Introduction to BIS code- Types of limit states-     |                     |    |     |
|--------|----------------------------------------------------------------------|---------------------|----|-----|
| ch     | aracteristic and design values-partial safety factors-types of loads |                     |    |     |
| an     | d their factors.                                                     |                     |    |     |
| Li     | mit State of Collapse in Bending-assumptions-stress-strain           |                     |    |     |
| rel    | ationship of steel and concrete- analysis of singly reinforced       |                     |    |     |
| ree    | ctangular beams-balanced-under reinforced-over reinforced            |                     |    |     |
| se     | ctions-moment of resistance codal provisions                         |                     |    |     |
| Li     | mit state of collapse in shear and bond- shear stresses in beams-    | . A                 |    |     |
| tvi    | pes of reinforcement-shear strength of RC beam-IS code               | $\langle 1 \rangle$ |    |     |
| ree    | commendations for shear design-design of shear reinforcement-        | í.                  |    |     |
| II ex  | amples                                                               |                     | 9  | 15  |
| Bo     | and development length - anchorage for reinforcement bars -          |                     |    |     |
| co     | de recommendations regarding curtailment of reinforcement            |                     |    |     |
|        | FIRST INTERNAL EXAMINATION                                           |                     |    |     |
| De     | esign of Singly Reinforced Beams- basic rules for design- design     |                     |    |     |
| ex     | ample of simply supported beam- design of cantilever beam-           |                     |    |     |
| III de | tailing Analysis and design of doubly reinforced beams –             |                     | 9  | 15  |
| de     | tailing, T-beams- terminology- analysis of T beams- examples -       |                     |    |     |
| De     | esign for torsion-IS code approach- examples.                        |                     |    |     |
| De     | esign of slabs- introduction- one-way and two-way action of slabs    |                     |    |     |
|        | load distribution in a slab- IS recommendations for design of        |                     |    |     |
| IV sla | abs- design of one-way slab- cantilever slab- numerical problems     |                     | 9  | 15  |
|        | concepts of detailing of continuous slab –code coefficients.         |                     |    |     |
|        | SECOND INTERNAL EXAMINATION                                          |                     |    |     |
| Tv     | wo- way slabs- simply supported and restrained slabs – design        |                     |    |     |
| us     | ing IS Code coefficients Reinforcement detailing                     |                     |    |     |
| V L    | imit State of Serviceability- limit state of deflection- short term  |                     | 10 | 20  |
| an     | d long term deflection-IS code recommendations- limit state of       |                     |    |     |
| cra    | acking- estimation of crack width- simple numerical examples         |                     |    |     |
| St     | air cases- Types-proportioning-loads- distribution of loads – codal  |                     |    |     |
| pro    | ovisions - design and detailing of dog legged stair- Concepts of     |                     |    |     |
| tre    | ead-riser type stairs (detailing only)                               |                     |    |     |
| Co     | olumns- introduction –classification- effective length- short        |                     | 10 | • • |
|        | lumn - long column - reinforcement-IS specifications regarding       |                     | 10 | 20  |
| со     | lumns- limit state of collapse: compression -design of axially       |                     |    |     |
| loa    | aded short columns-design examples with rectangular ties and         |                     |    |     |
| he     | lical reinforcement                                                  |                     |    |     |
|        | END SEMESTER EXAMINATION                                             |                     |    |     |

Note

All designs shall be done as per current IS specifications
 Special importance shall be given to detailing in designs
 During tutorial hours detailing practice shall be done.

4. SI units shall be followed.

5. IS 456-2000 shall be permitted for the End Semester Examination

# Maximum Marks :100

#### **Exam Duration: 3 Hrs**

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each
Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each
Part C - Module V & VI : 2 questions out of 3 questions carrying 20 marks each
Note : 1. Each part should have at least one question from each module

2. Each question can have a maximum of 4 subdivisions (a, b, c, d)



| Course C                   | se Code Course Name L-T-P-Credits Year of Introduction |                                                                                           |                             |               |                            |  |
|----------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------|---------------|----------------------------|--|
| CE30                       | 3                                                      | STRUCTURAL ANALYSIS -11                                                                   | 3-0-0-3                     | 201           | 6                          |  |
| Pre-requi                  | site: C                                                | E201 Mechanics of Solids                                                                  |                             |               |                            |  |
| Course ob                  | ojectiv                                                | es:                                                                                       |                             |               |                            |  |
| • To on                    | equip t<br>analysi                                     | he students with the force and displacement met<br>s of rigid frames and trusses          | thods of structural and     | alysis with e | mphasis                    |  |
| Syllabus :                 |                                                        | TECHNIQUO                                                                                 | CICA                        | Y L           |                            |  |
| Slope Defle<br>Kani's metl | ection 1<br>hod of a                                   | Method, Moment Distribution Method, Clapey analysis, Beams curved in Plan, Plastic Theory | rons Theorem (Thre          | e Moment I    | Equation),                 |  |
| Expected                   | Outco                                                  | mes:                                                                                      | ITY                         |               |                            |  |
| The studer                 | nts will                                               | be able to                                                                                | 4 L L                       |               |                            |  |
| i. an                      | alyse s                                                | tructures using force method                                                              |                             |               |                            |  |
| 11. ana                    | alyse s                                                | tructures using displacement method                                                       |                             |               |                            |  |
| iv and                     | alvse st                                               | ructures using plastic theory                                                             |                             |               |                            |  |
| Text Books                 | 1 y se st                                              | fuctures using plastic theory                                                             |                             |               |                            |  |
| 1.                         | Kenne                                                  | eth Leet, Chia M Uang & Anne M Gilbert.,                                                  | Fundamentals of St          | ructural An   | alysis,                    |  |
|                            | McGr                                                   | aw Hill, 4e, 2010                                                                         | 7                           |               |                            |  |
| 2.                         | R. Va<br>(P) $I_{t}$                                   | idyanathan and P. Perumal, Structural Anal                                                | ysis Volume I & II,         | Laxmi Pub     | lications                  |  |
| 3.                         | (P) L(<br>Reddy                                        | u., 2017<br>v. C.S., Basic Structural Analysis, Tata Mc                                   | Graw Hill, 3e, 2011         |               |                            |  |
| References                 | ;;                                                     |                                                                                           | <u>Statt 1111, 30, 2011</u> |               |                            |  |
| 1.                         | Danie                                                  | l L Schodak, Structures, Pearson Education                                                | , 7e, 2014                  |               |                            |  |
| 2.                         | Hibbe                                                  | eler, RC, Structural analysis, Pearson Educa                                              | tion, 2012                  |               |                            |  |
| 3.                         | Kinne                                                  | ey J. S., Indeterminate Structural Analysis, C                                            | Oxford & IBH, 1966          | 5             |                            |  |
| 4.                         | Negi                                                   | L. S. and Jangid R. S, Structural Analysis, T                                             | Tata McGraw Hill, 1         | 997           |                            |  |
| 5.                         | Rajas<br>2008                                          | ekaran S. and Sankarasubramanian G., Com                                                  | putational Structura        | al Mechanio   | cs, PHI,                   |  |
| 6.                         | S.S. E                                                 | Bhavikatti, <mark>Structural A</mark> nalysis II, Vikas Pub                               | lication Houses (P)         | Ltd, 2016     |                            |  |
| 7.                         | SP:6<br>Stand                                          | (6): Application of Plastic Theory in Design ards, 1972                                   | of Steel Structures,        | Bureau of     | Indian                     |  |
| 8.                         | Timos                                                  | shenko S. P. and Young D. H., Theory of St                                                | ructures, McGraw I          | Hill, 2e, 196 | 55                         |  |
| 9.                         | Utku                                                   | S, Norris C. H & Wilbur J. B, Elementary S                                                | Structural Analysis,        | McGraw H      | fill, 1990                 |  |
| 10.                        | Wang                                                   | C. K., Intermediate Structural Analysis, Ta                                               | ta McGraw Hill, 19          | 89            |                            |  |
|                            |                                                        | COURSE PLAN                                                                               |                             |               |                            |  |
| Module                     | 0-                                                     | Contents                                                                                  |                             | Hours         | Sem.<br>Exam<br>Marks<br>% |  |
| Ι                          | Clape                                                  | yrons Theorem (Three Moment Equation)                                                     | :Derivation of three        | 7             | 15                         |  |

|                          | moment equation - application of three moment equation for analysis of    |     |   |    |
|--------------------------|---------------------------------------------------------------------------|-----|---|----|
|                          | continuous beams under the effect of applied loads and uneven support     |     |   |    |
|                          | settlement.                                                               |     |   |    |
|                          | Slope Deflection Method : Analysis of continuous beams- beams with        |     |   |    |
| II                       | overhang- analysis of rigid frames - frames without sway and with sway -  | ,   | 7 | 15 |
|                          | different types of loads -settlement effects                              |     |   |    |
|                          | FIRST INTERNAL EXAMINATION                                                |     |   |    |
| ш                        | Moment Distribution Method: Moment Distribution method – analysis         | ,   | 7 | 15 |
| 111                      | of beams and frames – non sway and sway analysis .                        | A   |   | 15 |
|                          | Kani's Method: Kani's Method of analysis applied to continuous beams      | 5   |   |    |
| IV                       | and single bay single storey rigid frames rigid frames – frames without   | 6   |   | 15 |
|                          | sway and with sway.                                                       | 1.5 |   |    |
|                          | SECOND INTERNAL EXAMINATION                                               |     |   |    |
| 17                       | Beams curved in plan: Analysis of cantilever beam curved in plan,         | ,   | 7 | 20 |
| v                        | analysis of circular beams over simple supports.                          |     | / | 20 |
|                          | Plastic Theory: Introduction – plastic hinge concepts – plastic modulus – |     |   |    |
| VI                       | shape factor – redistribution of moments – collapse mechanisms –          |     |   | 20 |
|                          | Plastic analysis of beams and portal frames by equilibrium and            |     | 8 | 20 |
|                          | mechanism methods.(Single Storey and Single bay Frames only)              |     |   |    |
| END SEMESTER EXAMINATION |                                                                           |     |   |    |

# **Maximum Marks :100**

#### **Exam Duration: 3 Hrs**

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each

Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each

Part C - Module V & VI : 2 questions out of 3 questions carrying 20 marks each Note :

14

1. Each part should have at least one question from each module.

2. Each question can have a maximum of 4 subdivisions (a, b, c, d)

| Course Code | Course Name                   | L-T-P-<br>Credits | Year of<br>Introduction |
|-------------|-------------------------------|-------------------|-------------------------|
| CE305       | GEOTECHNICAL ENGINEERING - II | 3-0-0-3           | 2016                    |

Pre-requisite CE208 Geotechnical Engineering - I

**Course objectives:** 

- To impart to the students, in-depth knowledge about the basic concepts and theories of foundation engineering;
- To enable the students to acquire proper knowledge about various methods of foundation analysis for different practical situations.

## Syllabus:

Stresses in subsoil due to loaded areas of various shapes, Boussinesq's formula, Newmark's chart, Lateral earth pressure, Rankine's and Coulomb' theories, Influence of surcharge, inclined backfill, water table and layering, Terzaghi's bearing capacity theory for isolated footings, Local and general shear failure, Total and differential settlements, soil improvement techniques, combined footings, raft foundations, well foundation, Problems encountered in well sinking, Pile foundations, Bearing capacity of single pile static and dynamic formulae, Capacity of Pile groups, Machine foundation, Methods of vibration isolation, site investigation, Guidelines for choosing spacing and depth of borings, boring methods, Standard Penetration Test.

#### **Expected Outcomes:**

The students will be able to understand

- i. the basic concepts, theories and methods of analysis in foundation engineering;
- ii. the field problems related to geotechnical engineering and to take appropriate engineering decisions.

#### **Text Books :**

- 1. Braja M. Das, "Principles of Foundation Engineering", Cengage Learning India Pvt. Ltd., Delhi, 2011.
- 2. K. R. Arora, Soil Mechanics and Foundation Engineering, Standard Publishers, 2011
- **3.** Murthy V N S., "Advanced Foundation Engineering", CBS Publishers & Distributors Pvt. Ltd., New Delhi, 2007

#### **References:**

- 1. Alam Singh., "Soil Engineering in Theory and Practice", Vol.1, CBS Publishers & Distributors Pvt. Ltd., New Delhi. 2002
- 2. Gopal Ranjan and and Rao A.S.R., "Basic and Applied Soil Mechanics", New Age International (P) Limited, New Delhi, 2002.
- 3. Purushothamaraj P., Soil Mechanics and Foundation Engineering, Dorling Kindersley(India) Pvt. Ltd., 2013
- 4. TengW.E., "Foundation Design", Prentice Hall, New Jersey, 1962.
- 5. Venkataramiah, "Geotechnical Engineering", Universities Press (India) Limited, Hyderabad, 2000.

| COURSE PLAN |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                            |  |  |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------|--|--|
| Module      | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Hours | Sem.<br>Exam<br>Marks<br>% |  |  |
| I           | Stresses in soil due to loaded areas - Boussinesq's formula for point<br>loads – assumptions [no derivation required] – Comments –<br>numerical problems<br>Vertical stress beneath loaded areas of strip, rectangular and<br>circular shapes(no derivation required)- Newmark's<br>chart[construction procedure not required] - Isobars- Pressure bulbs-<br>numerical problems                                                                                                                                                                                                                                           | 6     | 15                         |  |  |
| п           | Lateral earth pressure – At-rest, active and passive earth pressures –<br>Practical examples<br>Rankine's and Coulomb' theories[no derivation required]-Influence<br>of surcharge, inclined backfill and water table on earth pressure-<br>numerical problems<br>Earth pressure on retaining walls with layered backfill- numerical<br>problems                                                                                                                                                                                                                                                                           | 6     | 15                         |  |  |
|             | FIRST INTERNAL EXAMINATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                            |  |  |
| III         | Bearing capacity of shallow foundations – Ultimate, safe and<br>allowable bearing capacity Failure mechanism, assumptions and<br>equation of Terzaghi's bearing capacity theory for strip footing[no<br>derivation required] – Terzaghi's formulae for circular and square<br>footings numerical problems<br>Local and general shear failure - Factors affecting bearing capacity –<br>Influence of water table - numerical problems<br>Total and differential settlement- Causes - Methods of reducing<br>differential settlement-Brief discussion on soil improvement through<br>installation of drains and preloading. | 7     | 15                         |  |  |
| IV          | Combined footings- Rectangular and Trapezoidal combined footings<br>- numerical problems<br>Raft foundations (Design Concepts only) - Allowable Bearing<br>capacity of Rafts on sands and clays - Floating foundation.<br>Deep foundations - Elements of a well foundation – Problems<br>encountered in well sinking – Methods to rectify tilts and shifts                                                                                                                                                                                                                                                                | 6     | 15                         |  |  |
|             | SECOND INTERNAL EXAMINATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                            |  |  |
| V           | Pile foundations - Point bearing and friction piles - Bearing capacity<br>of single pile in clay and sand[I.S. Static formulae] - numerical<br>problems<br>Dynamic formulae(Modified Hiley formulae only) - I.S. Pile load test<br>[conventional]- Negative skin friction - numerical problems<br>Group action - Group efficiency - Capacity of Pile groups- numerical<br>problems                                                                                                                                                                                                                                        | 8     | 20                         |  |  |

| VI | Brief introduction to Machine foundation –Mass spring model for<br>undamped free vibrations - Natural frequency – Coefficient of<br>uniform elastic compression – Methods of vibration isolation<br>Brief introduction to site investigation –Objectives - Guidelines for<br>choosing spacing and depth of borings [I.S. guidelines only] - Auger<br>boring and wash boring methods - Standard Penetration Test – | 9 | 20 |  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----|--|
|    | procedure, corrections and correlations.                                                                                                                                                                                                                                                                                                                                                                          |   |    |  |

#### END SEMESTER EXAMINATION

# **QUESTION PAPER PATTERN (End semester exam)**

# Maximum Marks :100

#### **Exam Duration: 3 Hrs**

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each

Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each

Part C - Module V & VI : 2 questions out of 3 questions carrying 20 marks each

**Note** : 1.Each part should have at least one question from each module

2.Each question can have a maximum of 4 subdivisions (a, b, c, d)

014

| Course                 | Code                           | Course Name                                                                                           | L-T-P-<br>Crodits                | Year of Justice Version | of                         |  |  |
|------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------|----------------------------|--|--|
| CE3                    | 07                             | GEOMATICS                                                                                             | 3-0-0-3                          | 2016                    |                            |  |  |
| Prerequis              | Prerequisite : CE207 Surveying |                                                                                                       |                                  |                         |                            |  |  |
| Course of<br>• To      | <b>ojectives</b> :<br>impart a | wareness on the advanced surveying techniques                                                         | LA                               | M                       |                            |  |  |
| • To<br>• To           | understa<br>provide            | nd the errors associated with survey measurement<br>a basic understanding on geospatial data acquisit | nts<br>tion and its p            | process                 |                            |  |  |
| Syllabus:              |                                | UNIVERSIT                                                                                             | Y                                |                         |                            |  |  |
| Traverse<br>Systems, I | Survey,<br>Remote S            | Curve Surveying, Global Navigation Satell<br>ensing, Geographical Information System                  | lite System,                     | Global Pos              | sitioning                  |  |  |
| Course O               | utcomes                        | :                                                                                                     |                                  |                         |                            |  |  |
| • Th and               | e student<br>d the spa         | s will possess knowledge on the advanced meth tial representation of data.                            | ods of surve                     | eying, the ins          | truments                   |  |  |
| Text Book              | s / Refere                     | nces:                                                                                                 | 57                               |                         |                            |  |  |
| 1. Dr                  | B.C. Pu                        | nmia , Ashok Kumar Jain & Arun Kumar Jain                                                             | - Surveying                      | , Laxmi pub             | lications                  |  |  |
| 2. Pro                 | of. T. <mark>P.</mark> K       | Lenetkar and Prof. S.V. Kulkarni - Surveying and                                                      | l Levelling, I                   | Pune Vidyart            | hi Griha                   |  |  |
| Pra                    | akashan,2                      |                                                                                                       |                                  | 005                     |                            |  |  |
| 3. R.<br>4. S.I        | Agor - A<br>K. Dugga           | 1 ext book of Surveying and Levelling, Khanna I<br>1 - Surveying Vol II Tata McGraw Hill Ltd Re       | Publishers, 2<br>print 2015      | 2005                    |                            |  |  |
| Reference              | es :                           |                                                                                                       |                                  |                         |                            |  |  |
| 1. Bu                  | rrough P                       | , Principles of Geographical Information system                                                       | s, Oxford U                      | niversity Pre           | ss, 1998                   |  |  |
| <b>2.</b> Ch           | ang,K, "                       | Introduction to Geographic Information System                                                         | s", Tata Mc                      | Graw-Hill Pu            | ıblishing                  |  |  |
| <b>3.</b> Ge           | orge Jose                      | eph. "Fundamentals of Remote Sensing", Univer                                                         | sitv Press, 20                   | 003                     |                            |  |  |
| 4. Ilif                | ffe, C.J.,                     | Datums and Map Projections for Remote Sensi                                                           | ng, GIS and                      | Surveying,              | Whittles                   |  |  |
| Pu                     | blishing,                      | 2006                                                                                                  |                                  |                         |                            |  |  |
| 5. Jar                 | mes M A                        | Andersen, Edward M Mikhail, Surveying The                                                             | ory and Pra                      | actice, McG1            | aw Hill                    |  |  |
| edi                    | ucation, 7                     | Change 'Introduction to CIS' Tota McCrow II                                                           | 11 Dublishin                     | Co Itd Pa               | 2016                       |  |  |
| 0. Ka<br>7 Lil         | lesand M                       | L and Kiefer W "Remote Sensing and Image                                                              | III Publisiiiii<br>Interpretatio | g CO. Liu, de           | , 2010<br>ilev and         |  |  |
| Sons.Inc., 2000        |                                |                                                                                                       |                                  |                         |                            |  |  |
| COURSE PLAN            |                                |                                                                                                       |                                  |                         |                            |  |  |
| Module                 |                                | Contents                                                                                              |                                  | Hours                   | Sem.<br>Exam<br>Marks<br>% |  |  |
| Ι                      | Travers                        | e Surveying - Methods of traversing, Checks in c                                                      | losed travers                    | e, 6                    | 15                         |  |  |
|                        | raverse                        | computations, balancing the traverse- methods                                                         |                                  |                         | 1                          |  |  |

| II | Curve Surveying – Elements of simple and compound curves –<br>Method of setting out– Elements of Reverse curve (Introduction<br>only)– Transition curve – length of curve – Elements of transition<br>curve - Vertical curve (introduction only) | 8 | 15 |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----|
|    | FIRST INTERNAL EXAMINATION                                                                                                                                                                                                                       |   |    |
|    | Global Navigation Satellite System- Types, Global Positioning                                                                                                                                                                                    |   |    |
| Ш  | Systems-Components and Principles, Satellite ranging-calculating                                                                                                                                                                                 | 6 | 15 |
|    | position, Satellite signal structure, code phase and carrier phase                                                                                                                                                                               | 0 | 15 |
|    | measurements, GPS errors and blases, Application of GPS                                                                                                                                                                                          |   |    |
|    | GPS Surveying methods-Static, Rapid static, Kinematic methods –                                                                                                                                                                                  |   |    |
| IV | DGPS, Phases of GPS Survey -Planning and preparation, Field                                                                                                                                                                                      | 6 | 15 |
|    | operation-norizontal and vertical control, data sheet, visibility                                                                                                                                                                                |   |    |
|    | diagram, Processing and report preparation,                                                                                                                                                                                                      |   |    |
|    | SECOND INTERNAL EXAMINATION                                                                                                                                                                                                                      |   |    |
|    | <b>Remote Sensing</b> : Definition- Electromagnetic spectrum-Energy<br>interactions with atmosphere and earth surface features-spectral<br>reflectance of vegetation soil and water- Classification of sensors-                                  |   |    |
| V  | Active and Passive. Resolution-spatial. spectral radiometric and                                                                                                                                                                                 | 8 | 20 |
|    | Temporal resolution, Multi spectral scanning-Along track and across                                                                                                                                                                              |   |    |
|    | track scanning                                                                                                                                                                                                                                   |   |    |
|    | Geographical Information System-components of GIS, GIS                                                                                                                                                                                           |   |    |
|    | operations, Map projections- methods, Coordinate systems-                                                                                                                                                                                        |   |    |
| VI | Geographic and Projected coordinate systems, Data Types- Spatial                                                                                                                                                                                 | 8 | 20 |
|    | and attribute data, Raster and vector data representation-Data input<br>methods Geometric Transformation PMS arror Vector data                                                                                                                   |   |    |
|    | Analysis-buffering, overlay.                                                                                                                                                                                                                     |   |    |
|    | END SEMESTER EXAMINATION                                                                                                                                                                                                                         |   |    |

## Maximum Marks :100

#### **Exam** Duration: 3 Hrs

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each

Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each

Part C - Module V & VI : 2 questions out of 3 questions carrying 20 marks each

**Note** : 1.Each part should have at least one question from each module

2.Each question can have a maximum of 4 subdivisions (a, b, c, d)

| Course | Course Name                 | L-T-P-  | Year of      |
|--------|-----------------------------|---------|--------------|
| Code   |                             | Credits | Introduction |
| CE309  | WATER RESOURCES ENGINEERING | 3-0-0-3 | 2016         |

#### **Pre-requisite : NIL**

**Course objectives** 

- To impart knowledge regarding the availability of water on hydrosphere, its distribution and quantification
- To convey the knowledge on the scientific methods for computing irrigation water requirements
- To communicate fundamental knowledge on reservoir engineering and river engineering

### **Syllabus**

Hydrologic cycle, Precipitation, Infiltration and Evaporation-measurement and data analysis. Runoff-components and computation, Hydrograph, Unit Hydrograph and S-Hydrograph. Irrigation types and methods-Soil water plant relationships, Frequency of irrigation, Computation of crop water requirement. Stream flow measurement -Stage-discharge curve. Meandering of rivers, river training works. Surface water systems: diversion and storage systems, reservoir - estimation of storage capacity and yield of reservoirs - reservoir sedimentation -useful life of reservoir. Groundwater - Aquifer types and properties - Steady radial flow into a well. Estimation of yield of an open well.

### **Expected Outcome**

After successful completion of this course, the students will be able to :

- i. Describe the hydrologic cycle and estimate the different components
- ii. Determine crop water requirements for design of irrigation systems
- iii. Compute the yield of aquifers and wells.
- iv. Know the features of various river training works
- v. Estimate the storage capacity of reservoirs and their useful life.

# **Text Books:**

- 1. Arora, K.R., "Irrigation, Water Power and Water Resources Engineering", Standard Publishers Distributors, New Delhi, 2009.
- 2. Garg S.K, Irrigation Engineering and Hydraulic Structures Khanna Publishers New Delhi 2006.
- 3. Modi. P. N. Irrigation, Water Resources and Water Power Engineering, S.B.H Publishers and Distributors New Delhi 2009.
- 4. Punmia B.C. Ashok K Jain, Arun K Jain, B. B. L Pande, Irrigation and Water Power Engineering, Laxmi Publications (P) Ltd. 2010.

#### **References:**

- 1. Asawa. G.L. Irrigation and Water Resources Engineering, New Age International, 2000
- 2. Ojha.C.S.P., R.Berndtsson, P. Bhunya, Engineering Hydrology, Oxford university Press, 2015.
- 3. Patra. K.C., Hydrology and Water Resources Engineering, CRC Press, 2010.
- 4. Sahasrabudhe S.R., Irrigation Engineering & Hydraulic Structures, S.K. Kataria & Sons, 2013.
- 5. Subramanya. K., Engineering Hydrology, Tata Mc Graw Hill, 2011
- 6. Todd D. K., Ground Water Hydrology, Wiley, 2005.
- 7. Ven Te Chow, David R Maidment, L.W Mays., Applied Hydrology, McGraw Hill, 1988
- 8. Warren Viessman, G.L. Lewis, Introduction to Hydrology, Pearson Education, 2003.

| COURSE PLAN |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                            |  |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------|--|
| Module      | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hours | Sem.<br>Exam<br>Marks<br>% |  |
| Ι           | Hydrologic cycle-precipitation-mechanism, types and forms.<br>Measurement of rainfall using rain gauges-optimum number of rain<br>gauges. Estimation of missing precipitation. Representation of<br>rainfall data-mass curve and hyetograph. Computation of mean<br>precipitation over a catchment. Design rainfall - probable<br>maximum rainfall. Infiltration-measurement by double ring<br>infiltrometer. Horton's model. Evaporation-measurement by IMD<br>land pan, control of evaporation.                                                                                                                                                                                                                   | 8     | 15                         |  |
| п           | Runoff-components of runoff-methods of estimation of runoff-<br>infiltration indices, Hydrograph analysis-Hydrograph from isolated<br>storm-Base flow separation. Unit hydrograph –uses. Assumptions<br>and limitations of unit hydrograph theory. Computation of<br>storm/flood hydrograph of different duration by method of<br>superposition and by development of S– Hydrograph.                                                                                                                                                                                                                                                                                                                                | 8     | 15                         |  |
|             | FIRST INTERNAL EXAMINATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                            |  |
| III         | Irrigation– Necessity, Benefits and ill effects. Types: flow and lift<br>irrigation - perennial and inundation irrigation. Methods: flooding,<br>furrow, sprinkler and drip irrigation (concepts only, no design<br>aspects/problems), Soil water plant relationships, soil moisture<br>constants, Computation of crop water requirement: depth and<br>frequency of Irrigation, Duty and delta, relationship, variation of<br>duty, factors. Computation of design discharge of conveyance<br>channels, Irrigation efficiencies. Consumptive use of water:<br>concept of Evapotranspiration. (No detailed discussion on<br>estimation procedures)<br>Stream flow measurement: methods, Estimation of stream flow by | 6     | 15                         |  |
| IV          | area velocity method only, Stage discharge curve. Meandering of rivers, River training – objectives and classification, description of river training works.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6     | 15                         |  |
|             | SECOND INTERNAL EXAMINATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |                            |  |
| V           | Surface Water system: diversion and storage systems, necessity.<br>River flow: Flow duration Curve, Firm yield. Reservoirs-types of<br>reservoirs, zones of storage reservoir, reservoir planning-storage<br>capacity and yield of reservoirs-analytical method and mass curve<br>method. Reservoir sedimentation: trap efficiency, methods for<br>control. Computation of useful life of reservoir.                                                                                                                                                                                                                                                                                                                | 7     | 20                         |  |
| VI          | Ground water : vertical distribution of groundwater, classification<br>of saturated formation, water table, Aquifer properties : Porosity,<br>Specific yield, specific retention, Types of aquifers. Darcy's law,<br>co-efficient of permeability, Transmissibility. Wells- Steady radial<br>flow into a fully penetrating well in Confined and Unconfined<br>aquifers. Estimation of yield of an open well, pumping and<br>recuperation tests. Tube wells – types.<br>END SEMESTER EXAMINATION                                                                                                                                                                                                                     | 7     | 20                         |  |

# Maximum Marks :100

#### **Exam Duration: 3 Hrs**

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each
Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each
Part C - Module V & VI : 2 questions out of 3 questions carrying 20 marks each
Note : 1.Each part should have at least one question from each module

2 Each question can have a maximum of 4 subdivisions (a, b, c, d)



| Course | Course Name                    | L-T-P-  | Year of      |
|--------|--------------------------------|---------|--------------|
| Code   |                                | Credits | Introduction |
| CE365  | FUNCTIONAL DESIGN OF BUILDINGS | 3-0-0-3 | 2016         |

# **Prerequisite : CE204 Construction Technology**

#### **Course objectives:**

- To understand the acoustical design concepts and noise control techniques
- To impart the fundamental concepts of natural and artificial lighting designs
- To provide principles of climatic conscious design of buildings with special emphasis on tropical climates.
- To understand the apparent position of sun with respect to earth during different periods of the year and apply it in computation of solar radiation and design of shading devices.

### Syllabus:

Acoustics : Physics of sound- Behavior of sound- Sound insulation and reverberation control Lighting: Principles- Day lighting and artificial lighting – design methods

Thermal design of buildings: Climatic elements – classification- thermal comfort and indices-solar radiation calculations and design of shading devices.

Thermo physical properties of building materials and thermal control- passive and active building design- Steady and periodic heat flow through building envelope. Concept of green building.

#### **Expected Outcomes:**

On completion of the course, the students will be able to:

- i. Analyze and make effective decisions in use of principles of functional planning of the buildings with respect to Acoustics and Lighting and Thermal design of buildings in various climatic zones that the student may encounter in his/her professional career.
- ii. Select different building materials and explain the manner in which they can be used in different types of buildings with respect to various functional requirements like acoustics, lighting and thermal comfort.
- iii. Apply the techniques learned to the estimate solar radiation falling on different surfaces of the buildings, design shading devices to protect from direct sunlight, design of energy efficient, functionally comfortable buildings, low energy buildings and green buildings.

# **References :**

- 1. Ajitha Simha.D, Building Environment, Tata McGraw Hill Publishing Co., New Delhi, 1985
- 2. Bureau of Indian standards, Handbook on Functional Requirement of Buildings SP:41(S and T) 1987
- 3. Givoni. B Man,. Climate and Architecture, Applied Science Publication, 1976
- 4. Knudsen V.O. and Harris C.M., Acoustical Design in Architecture, John Wiley, 1980
- 5. Koenigseberger, Manual of tropical Housing and Building Part I Climatic design, Orient Longman, 2011
- 6. Krishnan, Climate responsive architecture, Tata McGraw Hill, 1999
- 7. M David Egan, Architectural Acoustics, J.Ross Publishing, 2007
- 8. Olgay Victor, Design with climate-A bioclimatic approach to architectural regionalism- Princeton University press-1963

| COURSE PLAN              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                            |  |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------|--|
| Module                   | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Hours | Sem.<br>Exam<br>Marks<br>% |  |
| Ι                        | Acoustics, fundamentals: Physics of sound-Frequency, period amplitude. Intensity of sound- Watts/m <sup>2</sup> - Bel- Decibel scales- dBA-Phon. Addition of sound levels. Human Audibility range. Behavior of sound in free and reverberant fields. Noise- allowable limits-effect of noise on human-Air and structure born noises-equivalent noise levels-day and night equivalent.                                                                                                                                                                                                                                                                                                                                                            | 7     | 15                         |  |
| п                        | Acoustics, applications: Measures of noise control- Source-path<br>and receiving end. TL value and computation of TL value,<br>Flanking paths. Sound absorption-materials and fixings.<br>Reverberation-Sabines formula-Eyrings modification. Acoustical<br>defects- acoustical design of auditoriums and small lecture halls.<br>Acoustical considerations of offices, hospitals and Industrial<br>buildings.                                                                                                                                                                                                                                                                                                                                   | 7     | 15                         |  |
|                          | FIRST INTERNAL EXAMINATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                            |  |
| III                      | <b>Lighting, Natural:</b> Visual tasks – Natural lighting- illumination requirements for various buildings –principles of day lighting – day light factor and its components- Design of side-lit windows-BIS and CBRI methods-skylights                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6     | 15                         |  |
| IV                       | <b>Lighting, Artificial</b> : Artificial lighting- illumination requirements-<br>lux meter – lamps and luminaries – polar distribution curves–<br>Colour temperature and colour rendering index- glare -Design of<br>artificial lighting – lumen method – point by point method. Basic<br>idea of street lighting and outside lighting                                                                                                                                                                                                                                                                                                                                                                                                           | 6     | 15                         |  |
|                          | SECOND INTERNAL EXAMINATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |                            |  |
| V                        | <b>Thermal comfort:</b> Factors affecting thermal comfort<br>Effective temperature –Thermal comfort indices-ET-CET Charts-<br>Bioclimatic chart- Psychrometry and Psycrometric chart.<br><b>Earth-Sun relationship</b> : Sun's apparent movement with respect to<br>the earth. Solar angles-Computation of solar radiation on different<br>surfaces-solar path diagram-shadow-throw concept and design of<br>shading devices                                                                                                                                                                                                                                                                                                                     | 8     | 20                         |  |
| VI                       | Heat flow through building envelope: Thermo physical properties<br>of building materials: Thermal quantities – heat flow – thermal<br>conductivity – resistance and transmittance and surface coefficient -<br>Sol- air temperature concept- solar gain factor. Thermal<br>transmittance of structural elements – thermal gradients – heat<br>gain/loss calculation. Periodic heat flow – time lag and decrement<br>factor.<br>Design approaches: Climate conscious designs- Climatic zones in<br>India- orientation and shape of buildings in different climatic zones-<br>Passive solar-Active solar and Active approaches. Requirements of<br>buildings in tropical areas-Thermal insulation-Introduction to the<br>concept of green-building | 8     | 20                         |  |
| END SEMESTER EXAMINATION |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                            |  |

#### Maximum Marks :100

## **Exam Duration: 3 Hrs**

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each
Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each
Part C - Module V & VI : 2 questions out of 3 questions carrying 20 marks each
Note : 1.Each part should have at least one question from each module

2 Each question can have a maximum of 4 subdivisions (a,b,c,d)



| Course                                                                                                                                                                                                                                  | Code                                                                                                                                                                                                                                                                                                                  | Course Name                                                                                                                                                                                                                            | L-T-P-<br>Credits                                                  | Yea                                                | nr of<br>luction                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------|
| CE3'                                                                                                                                                                                                                                    | 71                                                                                                                                                                                                                                                                                                                    | Environment and Pollution                                                                                                                                                                                                              | 3-0-0-3                                                            | 20                                                 | )16                                                 |
| Prerequis                                                                                                                                                                                                                               | ites: Nil                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                        |                                                                    |                                                    |                                                     |
| Course ob<br>• To<br>dis                                                                                                                                                                                                                | jectives:<br>understa<br>eases and                                                                                                                                                                                                                                                                                    | nd the various types of environmental and indus<br>1 their causes                                                                                                                                                                      | trial pollution                                                    | ı, pollutanı                                       | ts, related                                         |
| • To                                                                                                                                                                                                                                    | impart tl                                                                                                                                                                                                                                                                                                             | ne various management techniques available for                                                                                                                                                                                         | pollution abat                                                     | tement                                             |                                                     |
| Pollution,<br>Water poll<br>Solid was<br>pesticide<br>occupation                                                                                                                                                                        | Environi<br>lution, cl<br>stes, sou<br>pollution<br>nal health                                                                                                                                                                                                                                                        | mental and industrial, Types. Air pollution-sour<br>naracteristics of water pollutants, water borne d<br>rces, types, control methods, soil pollution,<br>n. Noise pollution, sources, effects, control<br>hazards, industrial hygiene | ces, effects, t<br>iseases, water<br>urbanization,<br>measures, in | types of p<br>r quality s<br>land deg<br>ndustrial | ollutants.<br>tandards.<br>gradation,<br>pollution, |
| Expected                                                                                                                                                                                                                                | Outcom                                                                                                                                                                                                                                                                                                                | es:                                                                                                                                                                                                                                    |                                                                    |                                                    |                                                     |
|                                                                                                                                                                                                                                         | <ul> <li>i. To have a basic knowledge of various pollution sources and their effects</li> <li>ii. To have an awareness of the various methods of prevention and reduction of pollutant</li> </ul>                                                                                                                     |                                                                                                                                                                                                                                        |                                                                    |                                                    |                                                     |
| Text Books                                                                                                                                                                                                                              | s / Refere                                                                                                                                                                                                                                                                                                            | nces:                                                                                                                                                                                                                                  |                                                                    |                                                    |                                                     |
| 1.<br>2.<br>3.                                                                                                                                                                                                                          | <ol> <li>B.C.Bhartia, Environmental Pollution and Control in Chemical Process Industries,<br/>Khanna Publishers, Delhi, 2001.</li> <li>Danny D Reible, Fundamentals of Environmental Engineering, CRC Press, 1998</li> <li>Gilbert M Masters, Wendell P Ela, Introduction to Environmental Engineering and</li> </ol> |                                                                                                                                                                                                                                        |                                                                    |                                                    |                                                     |
| 4.                                                                                                                                                                                                                                      | <ol> <li>4. Howard S Peavy, Donald R Rowe, George Tchobanoglous, Environmental Engineering,<br/>McGrawHill Education, 1984</li> </ol>                                                                                                                                                                                 |                                                                                                                                                                                                                                        |                                                                    |                                                    |                                                     |
| <ol> <li>Kurian Joseph &amp; R.Nagendran, Essentials of Environmental Studies, Pearson Education<br/>(Singapore) Pvt.Ltd, New Delhi, 2004.</li> <li>N.N Basak, Environmental Engineering, McGrawHill Education, Reprint 2015</li> </ol> |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                        |                                                                    |                                                    |                                                     |
| <ol> <li>P.AarneVesiland, Introduction to Environmental Engineering, PWS publishing company Boston, 1997.</li> <li>Suresh K Dhameja, Environmental Engineering and Management, S.K.Kataria&amp; Sons, Delhi, 2010.</li> </ol>           |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                        |                                                                    |                                                    |                                                     |
| COURSE PLAN                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                        |                                                                    |                                                    |                                                     |
| Module                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                       | Contents                                                                                                                                                                                                                               |                                                                    | Hour<br>s                                          | Sem.<br>Exam<br>Marks<br>%                          |
| Ι                                                                                                                                                                                                                                       | Enviror<br>Compo<br>Carbon                                                                                                                                                                                                                                                                                            | nment-Introduction-Multidisciplinary Nature<br>nents of Environment, Ecology, Ecosystem- Mate<br>and Nitrogen cycles                                                                                                                   | erial Cycling-                                                     | 6                                                  | 15                                                  |

Introduction: Classification of Pollution and Pollutants of environment, Pollution related Diseases, Basic requirements for

healthy environment

| II  | Air Pollution: Primary and Secondary Pollutants, Industrial Pollution,<br>Ambient Air Quality Standards, Types of air pollutants-sulfur<br>dioxide, nitrogen dioxide, carbon monoxide, particulate matter.<br>Effects of air pollutants on human, vegetation and environment | 6 | 15 |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----|--|
|     | FIRST INTERNAL EXAMINATION                                                                                                                                                                                                                                                   |   |    |  |
| III | Water Pollution: Point and Non-point Source of Pollution, Major<br>Pollutants of Water, Physical, chemical and biological characteristics<br>of water , Water borne diseases, Water Quality standards                                                                        | 7 | 15 |  |
| IV  | Solid Waste: Classification of Solid Waste, Composition and<br>Characteristics of Solid Waste, Plastic wastes; Segregation of Solid<br>waste, recycling and reuse of solid wastes, E-waste: Sources of<br>generation,.                                                       | 7 | 15 |  |
|     | SECOND INTERNAL EXAMINATION                                                                                                                                                                                                                                                  |   |    |  |
| V   | Land/Soil Pollution: Effects of urbanization on land degradation,<br>Impact of Modern Agriculture on Soil, pesticide pollution, Effect on<br>Environment and Life sustenance, Abatement measures                                                                             | 8 | 20 |  |
| VI  | Noise pollution: Sources of Noise, Effects of Noise, measurement of noise, Equivalent sound pressure level, Control measures                                                                                                                                                 | 8 | 20 |  |
|     | END SEMESTER EXAMINATION                                                                                                                                                                                                                                                     |   |    |  |

#### **Maximum Marks :100**

#### **Exam Duration: 3 Hrs**

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each

Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each

Part C - Module V & VI : 2 questions out of 3 questions carrying 20 marks each

Note : 1.Each part should have at least one question from each module

2.Each question can have a maximum of 4 subdivisions (a,b,c,d)

2014

| Course Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Course Name                                                                                          | L-T-P-Credits         | Year of<br>Introduction |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------|-------------------------|--|
| CE331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CE331 MATERIAL TESTING LAB -II 0-0-3-1                                                               |                       | 2016                    |  |
| Pre-requisite: C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E204 Construction Technology                                                                         |                       |                         |  |
| Course objectiv<br>• To enable<br>• To obtain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | es:<br>experimental evaluation of properties of the mathematics of the mathematics of the materials. | aterials used for con | crete                   |  |
| <ol> <li>List of Experiments:         <ol> <li>Determination of the Specific Gravity and Soundness of cement</li> <li>Determination of the Standard Consistency, Initial and Final Setting Times of Cement and the compressive strength of Cement.</li> <li>Tests on fine aggregate – specific gravity, bulking, sieve analysis, fineness modules, moisture content, bulk density</li> <li>Tests on coarse aggregate - specific gravity, sieve analysis, fineness modules, bulk density.</li> <li>Tests on coarse aggregate - specific gravity, sieve analysis, fineness modulus, bulk density.</li> <li>Tests on Fresh Concrete: Workability : Slump, Vee-Bee, Compaction factor tests, flow test</li> <li>Determination of the Compressive Strength of Concrete by Cube and Cylinder.</li> <li>Carrying out the Split Tensile and Flexural strength of Concrete.</li> <li>Compressive strength of Brick as per IS</li> <li>Transverse strength of tiles</li> <li>Demonstration of Mix Design of Concrete by IS methods</li> <li>Non destructive tests (rebound hammer &amp; ultrasonic pulse velocity)</li> </ol> </li> </ol> |                                                                                                      |                       |                         |  |
| Books/Manuals /References:- <ol> <li>Concrete Lab Manual, TTTI Chandigarh</li> <li>M.L. Gambhir, Concrete Manual, Dhanpat Rai &amp; Sons, Delhi.</li> <li>M.S.Shetty , Concrete Technology, Theory and Practice , S.Chand&amp; Company, 2014</li> <li>Relevant latest IS codes on Aggregates, Cement &amp; Concrete [269, 383, 2386, 10262(2009), SP23]</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                      |                       |                         |  |

| Course Code                                                                                                        | Course Name                  | L-T-P-<br>Credits | Year of<br>Introduction |  |
|--------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------|-------------------------|--|
| CE333                                                                                                              | GEOTECHNICAL ENGINEERING LAB | 0-0-3-1           | 2016                    |  |
| Pre-requisite : CE208 Geotechnical Engineering - I                                                                 |                              |                   |                         |  |
| Course objectives:                                                                                                 |                              |                   |                         |  |
| • To understand the laboratory tests used for determination of physical, index and Engineering properties of soil. |                              |                   |                         |  |
| List of Experiments:                                                                                               |                              |                   |                         |  |

- Determination of Water Content, Specific Gravity and Shrinkage Limit 1.
- 2. Field Density determination and Sieve Analysis
- 3. Atterberg Limits (Liquid Limit and Plastic Limit)
- 4. Hydrometer Analysis
- 5. Direct Shear test
- 6. **Standard Proctor Compaction Test**
- 7. Permeability Test and Unconfined Compression Test
- 8. Consolidation Test
- 9. **Swelling Test**
- 10. Heavy compaction
- California Bearing Ratio Test. 11.

# **Expected Outcomes:**

The students will

- i. have thorough knowledge about the procedures of laboratory tests used for determination of physical, index and engineering properties of soils
- have the capability to classify soils based on test results and interpret engineering behavior ii. based on test results
- be able to evaluate the permeability and shear strength of soils iii.
- iv. be able to evaluate settlement characteristics of soils
- be able to evaluate compaction characteristics required for field application v.

# **Text Books / References:**

- 1. IS codes relevant to each test
- 2. C. Venkatramaiah, Geotechnical Engineering, New Age International publishers, 2012
- 3. Gopal Ranjan and A. S. R. Rao, Basic and Applied Soil Mechanics, New Age International Publishers, 2012
- 4. K. R. Arora, Soil Mechanics and Foundation Engineering, Standard Publishers, 2011