M.TECH PROGRAMME IN TRANSPORTATION ENGINEERING

Cluster	:	08
Branch	:	Civil Engineering
Stream	:	Transportation Engineering
Year	:	2017
No. of Credits	:	67

Allotment of credits and examination scheme

Exami	Course	Name	L-T-P	Internal	End sem	ester exam	Credits
nation slot	Number			marks	Marks	Duration (Hrs)	
A	08MA6201	APPLIED STATISTICS AND PROBABILITY	3-1-0	40	60	3	3
В	08CE6201	FUNDAMENTALS OF TRAFFIC ENGINEERING	3-0-0	40	60	3	3
С	08CE6203	PAVEMENT ANALYSIS AND DESIGN	3-0-0	40	60	3	4
D	08CE6205	URBAN TRANSPORTATION PLANNING	3-1-0	40	60	3	3
Е	08CE62XX	ELECTIVE I	3-0-0	40	60	3	3
	08GN6001	RESEARCH METHODOLOGY	0-2-0	100	0	0	2
	08CE6291	SEMINAR -I	0-0-2	100	0	0	2
	08CE6293	PAVEMENT ENGINEERING LAB	0-0-2	100	0	0	2
		TOTAL	23	500	300	15	22

SEMESTER I

Total Contact Hours: 23

Total Credits: 22

ELECTIVE I

1.08 CE6211 AIRPORT INFRASTRUCTURE PLANNING AND DESIGN

- 2. 08 CE6213 MASS TRANSPORT PLANNING
- 3. 08 CE6215 ROAD SAFETY ENGINEERING
- 4. 08 CE6217 GROUND EXPLORATION TECHNIQUES

5. 08 CE6219 ENVIRONMENT IMPACT ASSESSMENT OF TRANSPORTATION PROJECTS

SEMESTER II

Exami	Course Number	Name	L-T-P	Internal marks	End seme	ester exam	Credits
nation slot	Number			marks	Marks	Duratio	
SIOU						n	
						(Hrs)	
А	08CE6202	REGIONAL	3-1-0	40	60	3	3
		TRANSPORTATION					
		PLANNING					
В	08CE6204	PAVEMENT	3-0-0	40	60	3	3
		CONSTRUCTION,					
		EVALUATION AND					
		MAINTENANCE					
С	08CE6206	ADVANCED	3-0-0	40	60	3	3
		TRAFFIC					
		ENGINEERING					
D	08CE62XX	ELECTIVE II	3-0-0	40	60	3	3
Е	08CE62YY	ELECTIVE III	3-0-0	40	60	3	3
	08CE6292	MINI PROJECT	0-0-4	100			2
	08CE6294	TRANSPORTATION	0-0-2	100			2
		ENGINEERING LAB					
		TOTAL	22	400	300	15	19

Total Contact Hours: 22

Total Credits: 19

ELECTIVE II

- 1. 08CE6212 GEOSYNTHETICS FOR HIGHWAY DESIGN
- 2. 08CE6214 GIS AND ITS APPLICATIONS IN TRANSPORTATION ENGINEERING
- 3. *08CE6216 OPERATIONS RESEARCH
- 4. 08CE6218 TUNNEL ENGINEERING
- 5. 08CE6220 PLANNING AND DESIGN OF FREIGHT TRANSPORTATION

ELECTIVE III

- 1. 08CE6222 ADVANCED SOIL MECHANICS
- 2. 08CE6224 INTELLIGENT TRANSPORTATION SYSTEM
- 3. *08CE6226 PROJECT MANAGEMENT
- 4. 08CE6228 ADVANCED TRAVEL DEMAND MODELING
- 5. 08CE6230 PLANNING AND DESIGN OF NON-MOTORISED TRANSPORTATION

SEMESTER III

Exami	Course Number	Name	L-T-P	Internal	End semester exam		Credits
nation slot	Number			marks	Marks	Duration	
5100						(Hrs)	
А	08CE72XX	ELECTIVE IV	3-0-0	40	60	3	3
В	08CE72YY	ELECTIVE V	3-0-0	40	60	3	3
	08CE7291	SEMINAR II	0-0-2	100	0	0	2
	08CE7293	PROJECT (PHASE 1)	0-0-12	50	0	0	0
		TOTAL	20	230	120	6	8

Total Contact Hours: 20

Total Credits: 8

ELECTIVE IV

- 1. 08CE7201 HIGHWAY GEOMETRIC DESIGN
- 2. 08CE7203 PAVEMENT EVALUATION AND MANAGEMENT
- 3. *08CE7205 SOFT COMPUTING TOOLS
- 4. 08CE7207 WATERWAYS INFRASTRUCTURE PLANNING AND DESIGN
- 5. 08CE7209 LAND USE TRANSPORTATION PLANNING

ELECTIVE V

- 1. 08CE7211 SUSTAINABLE TRANSPORTATION
- 2. 08CE7213 TRANSPORTATION ECONOMICS
- 3. 08CE7215 TRANSPORTATION SYSTEM MANAGEMENT
- 4. 08CE7217 RAILWAY INFRASTRUCTURE PLANNING AND DESIGN
- 5. 08CE7219 LOW VOLUME ROADS

Exami nation slot	Course Number	Name	L-T-P	Internal marks	End semes	ster exam	Credits
NA	08CE7294	PROJECT (PHASE 2)	0-0-21	70	30	NA	18
		TOTAL	21				18

SEMESTER IV

Total Contact Hours: 21

Total Credits: 18

Total Credits of the Programme: 67

SEMESTER I

COU	RSE CODE	COURSE NAME	L-T-P (C)	2017	
08	3MA6201	APPLIED STATISTICS AND PROBABILITY	3-1-0	(3)	
		Course Objectives			
To give	he Student:-				
1. Kno	wledge regarding	the fundamental concepts, theories of Probability dis	tributions.		
2. Idea	to evaluate a data	sequence using the principles of time series analysis			
3. Abil	ity to develop reg	ression models for the statistical data			
4. Abil	ity to conduct stati	istical test for checking various hypothesis and derive co	onclusions.		
		Syllabus			
Probabil	ty distributions-d	iscrete and continuous-standard distributions-fitting of	of distributions-		
Sampling	g techniques-statis	stical inference-estimation and testing of hypothesis-	regression analy	vsis-	
Analysi	s of variance - (Completely randomized designs -Randomized bloc	k designs. Lat	in Squares,	
Factoria	l experiments, C	Graphical presentation techniques. Time series mod	lels-covariance	matrix and	
principa	l components				
		Course Outcome			
		lyse probability distributions			
	•	e data analysis and identify correlations			
	elop Time Series				
		using appropriate techniques			
		g goodness of fit measures			
6. Ap	ply the knowledge	e in conducting statistical analysis and drawing infere	ences		
		References			
	ge C. Runger I Wiley student edi	Douglas C. Montgomery, Applied Statistics and ition, 2016	Probability for	Engineers,	
2. Gupt	a S.C. and Kapoo	or V.K, Fundamentals of Mathematical Statistics, Sul	tan Chand and S	Sons,1978.	
U	amin Jack R. and v Hill, 1997	l Comell C.Allin, Probability Statistics and Decision	n for Civil Eng	ineers, Mc-	
	ard A. Johnson, , 2007	Miller and Freunds, Probablity and Statistics for E	Engineers, Prent	ice Hall of	
5. Dall					
6. Jay I					
7. Rich	-	and Dean W. Wichern, Applied multivariate sta	atistical analys	is, Pearson	
		es Miller: Mathematical Statistics :Pearson Education	n Inc 2004		
	•	Engineering and Trasport Planning, Khanna Publishe			

COURSE CODE	COURSE NAME	L-T	C-P (C)
08MA6201	APPLIED STATISTICS AND PROBABILITY	3-1	l-0 (3)
Modules	Content	Contact Hours	Semester Exam Marks (%)
Ι	Probability mass functions and probability density function, distribution functions mean and variance. Binomial, Poisson, Exponential, Gamma, and Normal distribution, Mean and variance-Fitting of distributions (brief overview only)-computing probability using the above distributions.	7	15
Ш	Statistical Inference: Sampling distributions- Interval estimation, Confidence interval for mean, variance and regression coefficients., test of significance of (i) Mean (ii) Mean of two samples (iii)Proportions (iv) Variance (v) Two variance (vi) Paired t-test (vii) Chi-square test of goodness of fit (viii) Chi-square test for independence	7	15
	FIRST INTERNAL EXAM		
III	Linear regression and correlation, method of least squares, normal regression analysis, normal correlation analysis, multiple linear regression, multiple correlation co-efficient.	7	15
IV	Analysis of variance – One way designs, randomized block designs – Introduction to factorial experiments and model development. Graphical presentation techniques.	7	15
	SECOND INTERNAL EXAM		
V	Time Series Models: Components of time series – smoothing – measuring forecasting accuracy – testing of ARIMA models.	7	20
	Multivariate Analysis: Co-variance matrix- correlation		

matrix-multivariate normal density function, principal

END SEMESTER EXAM

components analysis (introductory level)

20

7

VI

COURSE CODE	COURSE NAME	L-T-P(C)	2017		
08CE6201	FUNDAMENTALS OF TRAFFIC	3-0-0	(4)		
ENGINEERING					
Course Objectives					
To give the Student:-					
1. Basic concepts of the c	components of road traffic and its characteristics.				
2. Idea to conduct, analys	se and interpret various traffic surveys.				
3. An understanding of ru	iles and regulations related to road traffic.				
4. Ability to design differ	rent traffic engineering control systems like signals and	l traffic islands	•		
	Syllabus				
Components and chara	cteristics of Traffic stream: road traffic, vehicle and ro	ad user			
Traffic stream paramet	ers: Fundamental diagrams of traffic flow, PCU conce	pts			
Traffic surveys-Data c	ollection and analysis of various traffic parameters				
Studies on parking, hea	adway, pedestrian, accident and Congestion				
Application of probabi	lity and statistics in traffic Engineering data analysis				
Traffic controls and rea	gulations, Design of intersections- signals, traffic man	agement measu	res		
	Course Outcome				
1. Ability to understand the	e various characteristics of elements in traffic engineer	ing.			
2. Ability to analyse and in	terpret the significant parameters in traffic scenario.				
3. Awareness to various tra	affic control devices and how to implement traffic safe	ty			
	References				
1. Brian Wolshon, Anura	ag Pande, Traffic Engineering Handbook, Institute of	Transport Engl	ineers, 7th		
Edition, Wiley, 2016.					
2. Coleman O'Flaherty, T	Transport Planning and Traffic Engineering, Elsevier, 1	.997.			
3. Fred L. Mannering, Sc Edn., Wiley 2012.	ott S. Washburn, Principles of Highway Engineering a	nd Traffic Ana	lysis, 5th		
4. Roess R P, Mc Shar 2004	ne W R & Prassas E S, Traffic Engineering, Pre-	entice Hall, 31	d edition		
5. Pignataro L J, Traffic Engineering, Theory and Practice 1983					
6. A. D. May, Traffic Flow Fundamentals, Prentice Hall, 1990.					
7. Kadiyali, L R., 'Traffic Engineering and Transport Planning', Khanna Publishers, 2011.					
 Matson, Smith and Hurd, 'Traffic Engineering', Mc GrawHill Book Co., 1955. Wells, G R, 'Traffic Engineering-An Introduction', Griffin, London 1970. 					
	Das Animesh,Principles of Transportation Eng	nooring DUI	Looming		
Pvt.Ltd.,2009	Das Annnesh,Fincipies of Transportation Eng	ineering, FHI	Learning		
	raffic Analysis and Design, 2nd Edition, Macmillan, 1	989.			
12. IRC Publications	··· , ··· ··· ··· ··· ··· ··· ··· ··· ·				

COURSE CODE	COURSE NAME	L-T	C-P (C)
08CE6201	FUNDAMENTALS OF TRAFFIC ENGINEERING	3-()-0 (4)
Modules	Content	Contact Hours	Semester Exam Marks (%)
Ι	Components of Traffic System : Introduction, Human- vehicle-environment system, Characteristics of road users; Characteristics of vehicles; Characteristics of highways and traffic stream.	5	15
П	Traffic Engineering Data Collection : Sampling in Traffic Studies, Adequacy of Sample Size; Objectives, Methods of Study, Equipment, Data Collection, (a) Speed (b) Speed and Delay (c) Volume (d) Origin and Destination (e) Parking (f) Accident (g) Pedestrian and other Studies.	6	15
	FIRST INTERNAL EXAM		
III	Traffic Engineering Data Analysis –Data exploration techniques, fitting of distributions, statistical analysis of traffic stream parameters.	9	15
IV	Road safety improvement measures - Traffic laws and ordinances-General regulations-Regulations on vehicles, drivers, pedestrians and traffic-regulations on speed- speed zoning-parking regulations-enforcement of regulations. Road furniture - street lighting, design and analysis -Road safety audit and safety measures, traffic management measures.	10	15
	SECOND INTERNAL EXAM		
V	Traffic control engineering - Traffic Signs and Road Markings-design of at grade intersections-principles and design- channelization- design of rotaries-traffic signals- pre timed and actuated-design of signal settings (Webster and HCM methods)-phase diagrams, timing diagram- signal co ordination- other traffic control aids	13	20
VI	Traffic Stream Characteristics Microscopic and macroscopic flow characteristics; Time headways, temporal, spatial and flow patterns; Interrupted and un- interrupted traffic; Microscopic and macroscopic speed characteristics; Vehicular speed trajectories; Speed characteristics- mathematical distributions; Speed and travel time variations; travel time and delay studies; Introduction to microscopic and macroscopic density characteristics; distance headway characteristics. END SEMESTER EXAM	13	20

08CE6203 PAVEMENT ANALYSIS AND DESIGN 3-0-0 (3) Course Objectives To give the Student:- 1 Idea about various material used in pavement construction and their properties 2. An understanding of load distribution characteristics of flexible and rigid pavements 3 3. The concept of development of stresses and strains within the pavement system 4. 4. Knowledge about pavement design methods 9 Pavement materials – Aggregates, bitumen and cement – properties, grading and testing - Introduction to pavements, sub systems- factors affecting pavement design - Failure criteria for design of pavements - Stresses and strains in flexible pavements, Burnister's layer theory Design of flexible pavements. IRC Method, Asphalt Institute Method, AASHTO Method, Pavement drainage system - Stresses in rigid pavements, Design of rigid pavements: IRC, AASHTO and PCA method Design of continuously reinforced concrete pavements, (IRC method). Introduction to softwares used for design of pavements. Course Outcome 1. Select suitable materials required for flexible and rigid pavement system 3. Ability to analyse the stresses and design pavements with better performance and longer service life References 1. Athanassios Nikolaides, Highway Engineering: Pavements, Materials and Control of Quality, CRC press, 2014. 2. Richard Kim Y, Asphalt pavements, CRC press, 20	COURSE CODE	COURSE NAME	L-T-P(C)	2017		
 To give the Student:- Idea about various material used in pavement construction and their properties An understanding of load distribution characteristics of flexible and rigid pavements The concept of development of stresses and strains within the pavement system Knowledge about pavement design methods Syllabus Pavement materials – Aggregates, bitumen and cement – properties, grading and testing - Introduction to pavements, sub systems- factors affecting pavement design – Failure criteria for design of pavements - Stresses and strains in flexible pavements, Burmister's layer theory Design of flexible pavements: IRC Method, Asphalt Institute Method, AASHTO Method, Pavement design of pavements. IRC, AASHTO and PCA method Design of continuously reinforced concrete pavements, (IRC method). Introduction to softwares used for design of pavements. Course Outcome Select suitable materials required for flexible and rigid pavement construction. Understand the fundamentals of stress distribution within a pavement system Ability to analyse the stresses and design pavements with better performance and longer service life References Athanassios Nikolaides, Highway Engineering: Pavements, Materials and Control of Quality, CRC press, 2014. Richard Kim Y, Asphalt pavements, CRC press, 2014. Asphalt Institute. Mix Design Methods – For Asphalt Concrete and Other Hot-Mix Types, Manual Series No. 2 (MS-2), Asphalt Institute, Kentucky, USA, 1997. R. N. Hunter, Bituminous Mixtures in Road Construction, Thomas Telford Services Ltd 1995. Atkins, H.N. Highway Materials, Soils, and Concretes, Reston Publishing Company, Virginia, USA, 4th edition, 2002. Bland, D.R. The Theory of Linear Viscoelasticity, Pergamon Press, New York, USA, 1960. Christensen, R.M. Theory of Viscoelasticity – An Introduction, Academic Press, New York, USA, 1971.<!--</th--><th>08CE6203</th><th></th><th>3-0-</th><th>0 (3)</th>	08CE6203		3-0-	0 (3)		
 Idea about various material used in pavement construction and their properties An understanding of load distribution characteristics of flexible and rigid pavements The concept of development of stresses and strains within the pavement system Knowledge about pavement design methods Syllabus Pavement materials – Aggregates, bitumen and cement – properties, grading and testing - Introduction to pavements, sub systems- factors affecting pavement design – Failure criteria for design of pavements - Stresses and strains in flexible pavements, Burmister's layer theory Design of flexible pavements: IRC Method, Asphalt Institute Method, AASHTO Method, Pavement drainage system - Stresses in rigid pavements, Design of rigid pavements: IRC, AASHTO and PCA method Design of continuously reinforced concrete pavements, (IRC method). Introduction to softwares used for design of pavements. Course Outcome Select suitable materials required for flexible and rigid pavement system Ability to analyse the stresses and design pavements, with better performance and longer service life References Athanassios Nikolaides, Highway Engineering: Pavements, Materials and Control of Quality, CRC press, 2014. Richard Kim Y, Asphalt pavements, CRC press, 2014. Asphalt Institute. Mix Design Methods – For Asphalt Concrete and Other Hot-Mix Types, Manual Series No. 2 (MS-2), Asphalt Institute, Kentucky, USA, 1997. R. N. Hunter, Bituminous Mixtures in Road Construction, Thomas Telford Services Ltd 1995. Atkins, H.N. Highway Materials, Soils, and Concretes, Reston Publishing Company, Virginia, USA, 4th edition, 2002. Bland, D.R. The Theory of Linear Viscoelasticity, Pergamon Press, New York, USA, 1960. Christensen, R.M. Theory of Viscoelasticity – An Introduction, Academic Press, New York, USA,		Course Objectives				
 An understanding of load distribution characteristics of flexible and rigid pavements The concept of development of stresses and strains within the pavement system Knowledge about pavement design methods Syllabus Pavement materials – Aggregates, bitumen and cement – properties, grading and testing - Introduction to pavements, sub systems- factors affecting pavement design – Failure criteria for design of pavements - Stresses and strains in flexible pavements, Burnister's layer theory Design of flexible pavements: IRC Method, Asphalt Institute Method, AASHTO Method, Pavement drainage system - Stresses in rigid pavements, Design of rigid pavements: IRC, AASHTO and PCA method Design of continuously reinforced concrete pavements, (IRC method). Introduction to softwares used for design of pavements. Course Outcome Select suitable materials required for flexible and rigid pavement construction. Understand the fundamentals of stress distribution within a pavement system Ability to analyse the stresses and design pavements, Materials and Control of Quality, CRC press, 2014. Richard Kim Y, Asphalt pavements, CRC press, 2014. Asphalt Institute. Mix Design Methods – For Asphalt Concrete and Other Hot-Mix Types, Manual Series No. 2 (MS-2), Asphalt Institute, Kentucky, USA, 1997. R. N. Hunter, Bituminous Mixtures in Road Construction, Thomas Telford Services Ltd 1995. Atkins, H.N. Highway Materials, Soils, and Concretes, Reston Publishing Company, Virginia, USA, 4th edition, 2002. Bland, D.R. The Theory of Linear Viscoelasticity, Pergamon Press, New York, USA, 1960. Christensen, R.M. Theory of Viscoelasticity – An Introduction, Academic Press, New York, USA, 1971. IRC:44-2008 Guidelines for Cement Concrete Mix Design for Pavements, The Indian Roads 	e e					
 The concept of development of stresses and strains within the pavement system Knowledge about pavement design methods Syllabus Pavement materials – Aggregates, bitumen and cement – properties, grading and testing - Introduction to pavements, sub systems- factors affecting pavement design – Failure criteria for design of pavements - Stresses and strains in flexible pavements, Burmister's layer theory Design of flexible pavements: IRC Method, Asphalt Institute Method, AASHTO Method, Pavement drainage system - Stresses in rigid pavements, Design of rigid pavements: IRC, AASHTO and PCA method Design of continuously reinforced concrete pavements, (IRC method). Introduction to softwares used for design of pavements. Course Outcome Select suitable materials required for flexible and rigid pavement system Ability to analyse the stresses and design pavements with better performance and longer service life References Athanassios Nikolaides, Highway Engineering: Pavements, Materials and Control of Quality, CRC press, 2014. Richard Kim Y, Asphalt pavements, CRC press, 2014. Asphalt Institute. Mix Design Methods – For Asphalt Concrete and Other Hot-Mix Types, Manual Series No. 2 (MS-2), Asphalt Institute, Kentucky, USA, 1997. R. N. Hunter, Bituminous Mixtures in Road Construction, Thomas Telford Services Ltd 1995. Atkins, H.N. Highway Materials, Soils, and Concretes, Reston Publishing Company, Virginia, USA, 4th edition, 2002. Bland, D.R. The Theory of Linear Viscoelasticity – An Introduction, Academic Press, New York, USA, 1971. IRC:44-2008 Guidelines for Cement Concrete Mix Design for Pavements, The Indian Roads 						
 Knowledge about pavement design methods Syllabus Pavement materials – Aggregates, bitumen and cement – properties, grading and testing - Introduction to pavements, sub systems- factors affecting pavement design – Failure criteria for design of pavements - Stresses and strains in flexible pavements, Burnister's layer theory Design of flexible pavements: IRC Method, Asphalt Institute Method, AASHTO Method, Pavement drainage system - Stresses in rigid pavements, Design of rigid pavements: IRC, AASHTO and PCA method Design of continuously reinforced concrete pavements, (IRC method). Introduction to softwares used for design of pavements. Course Outcome Select suitable materials required for flexible and rigid pavement system Ability to analyse the stresses and design pavements with better performance and longer service life References Athanassios Nikolaides, Highway Engineering: Pavements, Materials and Control of Quality, CRC press, 2014. Richard Kim Y, Asphalt pavements, CRC press, 2014. Asphalt Institute. Mix Design Methods – For Asphalt Concrete and Other Hot-Mix Types, Manual Series No. 2 (MS-2), Asphalt Institute, Kentucky, USA, 1997. R. N. Hunter, Bituminious Mixtures in Road Construction, Thomas Telford Services Ltd 1995. Atkins, H.N. Highway Materials, Soils, and Concretes, Reston Publishing Company, Virginia, USA, 4th edition, 2002. Bland, D.R. The Theory of Linear Viscoelasticity, Pergamon Press, New York, USA, 1960. Christensen, R.M. Theory of Viscoelasticity – An Introduction, Academic Press, New York, USA, 1971. IRC:44-2008 Guidelines for Cement Concrete Mix Design for Pavements, The Indian Roads 	0					
Syllabus Pavement materials – Aggregates, bitumen and cement – properties, grading and testing - Introduction to pavements, sub systems- factors affecting pavement design - Failure criteria for design of pavements - Stresses and strains in flexible pavements, Burmister's layer theory Design of flexible pavements: IRC Method, Asphalt Institute Method, AASHTO Method, Pavement drainage system - Stresses in rigid pavements, Design of rigid pavements: IRC, AASHTO and PCA method Design of continuously reinforced concrete pavements, (IRC method). Introduction to softwares used for design of pavements. Course Outcome 1. Select suitable materials required for flexible and rigid pavement construction. 2. Understand the fundamentals of stress distribution within a pavement system 3. Ability to analyse the stresses and design pavements with better performance and longer service life References 1. Athanassios Nikolaides, Highway Engineering: Pavements, Materials and Control of Quality, CRC press, 2014. 2. Richard Kim Y, Asphalt pavements, CRC press, 2014. 3. Asphalt Institute. Mix Design Methods – For Asphalt Concrete and Other Hot-Mix Types, 4. Manual Series No. 2 (MS-2), Asphalt Institute, Kentucky, USA, 1997. 5. R. N. Hunter, Bituminous Mixtures in Road Construction, Thomas Telford Services Ltd 1995. 6. Atkins, H.N. Highway Materials, Soils, and Concretes, Reston Publishing Company, Virg	_		tem			
 Pavement materials – Aggregates, bitumen and cement – properties, grading and testing - Introduction to pavements, sub systems- factors affecting pavement design - Failure criteria for design of pavements - Stresses and strains in flexible pavements, Burmister's layer theory Design of flexible pavements: IRC Method, Asphalt Institute Method, AASHTO Method, Pavement drainage system - Stresses in rigid pavements, Design of rigid pavements: IRC, AASHTO and PCA method Design of continuously reinforced concrete pavements, (IRC method). Introduction to softwares used for design of pavements. Course Outcome Select suitable materials required for flexible and rigid pavement construction. Understand the fundamentals of stress distribution within a pavement system Ability to analyse the stresses and design pavements with better performance and longer service life References Athanassios Nikolaides, Highway Engineering: Pavements, Materials and Control of Quality, CRC press, 2014. Asphalt Institute. Mix Design Methods – For Asphalt Concrete and Other Hot-Mix Types, Manual Series No. 2 (MS-2), Asphalt Institute, Kentucky, USA, 1997. R. N. Hunter, Bituminous Mixtures in Road Construction, Thomas Telford Services Ltd 1995. Atkins, H.N. Highway Materials, Soils, and Concretes, Reston Publishing Company, Virginia, USA, 4th edition, 2002. Bland, D.R. The Theory of Linear Viscoelasticity, Pergamon Press, New York, USA, 1960. Christensen, R.M. Theory of Viscoelasticity – An Introduction, Academic Press, New York, USA, 1971. IRC:44-2008 Guidelines for Cement Concrete Mix Design for Pavements, The Indian Roads 	4. Knowledge about pave					
 pavements, sub systems- factors affecting pavement design - Failure criteria for design of pavements - Stresses and strains in flexible pavements, Burmister's layer theory Design of flexible pavements: IRC Method, Asphalt Institute Method, AASHTO Method, Pavement drainage system - Stresses in rigid pavements, Design of rigid pavements: IRC, AASHTO and PCA method Design of continuously reinforced concrete pavements, (IRC method). Introduction to softwares used for design of pavements. Course Outcome 1. Select suitable materials required for flexible and rigid pavement construction. 2. Understand the fundamentals of stress distribution within a pavement system 3. Ability to analyse the stresses and design pavements with better performance and longer service life References 1. Athanassios Nikolaides, Highway Engineering: Pavements, Materials and Control of Quality, CRC press, 2014. 2. Richard Kim Y, Asphalt pavements, CRC press, 2014. 3. Asphalt Institute. Mix Design Methods – For Asphalt Concrete and Other Hot-Mix Types, 4. Manual Series No. 2 (MS-2), Asphalt Institute, Kentucky, USA, 1997. 5. R. N. Hunter, Bituminous Mixtures in Road Construction, Thomas Telford Services Ltd 1995. 6. Atkins, H.N. Highway Materials, Soils, and Concretes, Reston Publishing Company, Virginia, USA, 4th edition, 2002. 7. Bland, D.R. The Theory of Linear Viscoelasticity, Pergamon Press, New York, USA, 1960. 8. Christensen, R.M. Theory of Viscoelasticity – An Introduction, Academic Press, New York, USA, 1971. 9. IRC:44-2008 Guidelines for Cement Concrete Mix Design for Pavements, The Indian Roads 			1 T .	1		
 Stresses and strains in flexible pavements, Burmister's layer theory Design of flexible pavements: IRC Method, Asphalt Institute Method, AASHTO Method, Pavement drainage system - Stresses in rigid pavements, Design of rigid pavements: IRC, AASHTO and PCA method Design of continuously reinforced concrete pavements, (IRC method). Introduction to softwares used for design of pavements. Course Outcome 1. Select suitable materials required for flexible and rigid pavement construction. 2. Understand the fundamentals of stress distribution within a pavement system 3. Ability to analyse the stresses and design pavements with better performance and longer service life References 1. Athanassios Nikolaides, Highway Engineering: Pavements, Materials and Control of Quality, CRC press, 2014. 2. Richard Kim Y, Asphalt pavements, CRC press, 2014. 3. Asphalt Institute. Mix Design Methods – For Asphalt Concrete and Other Hot-Mix Types, 4. Manual Series No. 2 (MS-2), Asphalt Institute, Kentucky, USA, 1997. 5. R. N. Hunter, Bituminous Mixtures in Road Construction, Thomas Telford Services Ltd 1995. 6. Atkins, H.N. Highway Materials, Soils, and Concretes, Reston Publishing Company, Virginia, USA, 4th edition, 2002. 7. Bland, D.R. The Theory of Linear Viscoelasticity, Pergamon Press, New York, USA, 1960. 8. Christensen, R.M. Theory of Viscoelasticity – An Introduction, Academic Press, New York, USA, 1971. 9. IRC:44-2008 Guidelines for Cement Concrete Mix Design for Pavements, The Indian Roads 			-			
 Design of flexible pavements: IRC Method, Asphalt Institute Method, AASHTO Method, Pavement drainage system - Stresses in rigid pavements, Design of rigid pavements: IRC, AASHTO and PCA method Design of continuously reinforced concrete pavements, (IRC method). Introduction to softwares used for design of pavements. Course Outcome 1. Select suitable materials required for flexible and rigid pavement construction. 2. Understand the fundamentals of stress distribution within a pavement system 3. Ability to analyse the stresses and design pavements with better performance and longer service life References 1. Athanassios Nikolaides, Highway Engineering: Pavements, Materials and Control of Quality, CRC press, 2014. 2. Richard Kim Y, Asphalt pavements, CRC press, 2014. 3. Asphalt Institute. Mix Design Methods – For Asphalt Concrete and Other Hot-Mix Types, 4. Manual Series No. 2 (MS-2), Asphalt Institute, Kentucky, USA, 1997. 5. R. N. Hunter, Bituminous Mixtures in Road Construction, Thomas Telford Services Ltd 1995. 6. Atkins, H.N. Highway Materials, Soils, and Concretes, Reston Publishing Company, Virginia, USA, 4th edition, 2002. 7. Bland, D.R. The Theory of Linear Viscoelasticity, Pergamon Press, New York, USA, 1960. 8. Christensen, R.M. Theory of Viscoelasticity – An Introduction, Academic Press, New York, USA, 1971. 9. IRC:44-2008 Guidelines for Cement Concrete Mix Design for Pavements, The Indian Roads 			for design of pa	avements -		
 drainage system - Stresses in rigid pavements, Design of rigid pavements: IRC, AASHTO and PCA method Design of continuously reinforced concrete pavements, (IRC method). Introduction to softwares used for design of pavements. Course Outcome 1. Select suitable materials required for flexible and rigid pavement construction. 2. Understand the fundamentals of stress distribution within a pavement system 3. Ability to analyse the stresses and design pavements with better performance and longer service life References 1. Athanassios Nikolaides, Highway Engineering: Pavements, Materials and Control of Quality, CRC press, 2014. 2. Richard Kim Y, Asphalt pavements, CRC press, 2014. 3. Asphalt Institute. Mix Design Methods – For Asphalt Concrete and Other Hot-Mix Types, 4. Manual Series No. 2 (MS-2), Asphalt Institute, Kentucky, USA, 1997. 5. R. N. Hunter, Bituminous Mixtures in Road Construction, Thomas Telford Services Ltd 1995. 6. Atkins, H.N. Highway Materials, Soils, and Concretes, Reston Publishing Company, Virginia, USA, 4th edition, 2002. 7. Bland, D.R. The Theory of Linear Viscoelasticity, Pergamon Press, New York, USA, 1960. 8. Christensen, R.M. Theory of Viscoelasticity – An Introduction, Academic Press, New York, USA, 1971. 9. IRC:44-2008 Guidelines for Cement Concrete Mix Design for Pavements, The Indian Roads 			UTO Mathad	Dovomont		
 method Design of continuously reinforced concrete pavements, (IRC method). Introduction to softwares used for design of pavements. Course Outcome 1. Select suitable materials required for flexible and rigid pavement construction. 2. Understand the fundamentals of stress distribution within a pavement system 3. Ability to analyse the stresses and design pavements with better performance and longer service life References 1. Athanassios Nikolaides, Highway Engineering: Pavements, Materials and Control of Quality, CRC press, 2014. 2. Richard Kim Y, Asphalt pavements, CRC press, 2014. 3. Asphalt Institute. Mix Design Methods – For Asphalt Concrete and Other Hot-Mix Types, 4. Manual Series No. 2 (MS-2), Asphalt Institute, Kentucky, USA, 1997. 5. R. N. Hunter, Bituminous Mixtures in Road Construction, Thomas Telford Services Ltd 1995. 6. Atkins, H.N. Highway Materials, Soils, and Concretes, Reston Publishing Company, Virginia, USA, 4th edition, 2002. 7. Bland, D.R. The Theory of Linear Viscoelasticity, Pergamon Press, New York, USA, 1960. 8. Christensen, R.M. Theory of Viscoelasticity – An Introduction, Academic Press, New York, USA, 1971. 9. IRC:44-2008 Guidelines for Cement Concrete Mix Design for Pavements, The Indian Roads 	• •	-				
 Design of continuously reinforced concrete pavements, (IRC method). Introduction to softwares used for design of pavements. Course Outcome Select suitable materials required for flexible and rigid pavement construction. Understand the fundamentals of stress distribution within a pavement system Ability to analyse the stresses and design pavements with better performance and longer service life References Athanassios Nikolaides, Highway Engineering: Pavements, Materials and Control of Quality, CRC press, 2014. Richard Kim Y, Asphalt pavements, CRC press, 2014. Asphalt Institute. Mix Design Methods – For Asphalt Concrete and Other Hot-Mix Types, Manual Series No. 2 (MS-2), Asphalt Institute, Kentucky, USA, 1997. R. N. Hunter, Bituminous Mixtures in Road Construction, Thomas Telford Services Ltd 1995. Atkins, H.N. Highway Materials, Soils, and Concretes, Reston Publishing Company, Virginia, USA, 4th edition, 2002. Bland, D.R. The Theory of Linear Viscoelasticity, Pergamon Press, New York, USA, 1960. Christensen, R.M. Theory of Viscoelasticity – An Introduction, Academic Press, New York, USA, 1971. IRC:44-2008 Guidelines for Cement Concrete Mix Design for Pavements, The Indian Roads 		s in fight pavements, Design of fight pavements.	KC, AASIIIO	allu FCA		
 design of pavements. Course Outcome Select suitable materials required for flexible and rigid pavement construction. Understand the fundamentals of stress distribution within a pavement system Ability to analyse the stresses and design pavements with better performance and longer service life References Athanassios Nikolaides, Highway Engineering: Pavements, Materials and Control of Quality, CRC press, 2014. Richard Kim Y, Asphalt pavements, CRC press, 2014. Asphalt Institute. Mix Design Methods – For Asphalt Concrete and Other Hot-Mix Types, Manual Series No. 2 (MS-2), Asphalt Institute, Kentucky, USA, 1997. R. N. Hunter, Bituminous Mixtures in Road Construction, Thomas Telford Services Ltd 1995. Atkins, H.N. Highway Materials, Soils, and Concretes, Reston Publishing Company, Virginia, USA, 4th edition, 2002. Bland, D.R. The Theory of Linear Viscoelasticity, Pergamon Press, New York, USA, 1960. Christensen, R.M. Theory of Viscoelasticity – An Introduction, Academic Press, New York, USA, 1971. IRC:44-2008 Guidelines for Cement Concrete Mix Design for Pavements, The Indian Roads 		forced concrete pavements (IRC method) Introduct	tion to software	es used for		
Course Outcome 1. Select suitable materials required for flexible and rigid pavement construction. 2. Understand the fundamentals of stress distribution within a pavement system 3. Ability to analyse the stresses and design pavements with better performance and longer service life References 1. Athanassios Nikolaides, Highway Engineering: Pavements, Materials and Control of Quality, CRC press, 2014. 2. Richard Kim Y, Asphalt pavements, CRC press, 2014. 3. Asphalt Institute. Mix Design Methods – For Asphalt Concrete and Other Hot-Mix Types, 4. Manual Series No. 2 (MS-2), Asphalt Institute, Kentucky, USA, 1997. 5. R. N. Hunter, Bituminous Mixtures in Road Construction, Thomas Telford Services Ltd 1995. 6. Atkins, H.N. Highway Materials, Soils, and Concretes, Reston Publishing Company, Virginia, USA, 4 th edition, 2002. 7. Bland, D.R. The Theory of Linear Viscoelasticity, Pergamon Press, New York, USA, 1960. 8. Christensen, R.M. Theory of Viscoelasticity – An Introduction, Academic Press, New York, USA, 1971. 9. IRC:44-2008 Guidelines for Cement Concrete Mix Design for Pavements, The Indian Roads		norecu concrete pavements, (ince method). introduce	tion to software			
 Select suitable materials required for flexible and rigid pavement construction. Understand the fundamentals of stress distribution within a pavement system Ability to analyse the stresses and design pavements with better performance and longer service life References Athanassios Nikolaides, Highway Engineering: Pavements, Materials and Control of Quality, CRC press, 2014. Richard Kim Y, Asphalt pavements, CRC press, 2014. Asphalt Institute. Mix Design Methods – For Asphalt Concrete and Other Hot-Mix Types, Manual Series No. 2 (MS-2), Asphalt Institute, Kentucky, USA, 1997. R. N. Hunter, Bituminous Mixtures in Road Construction, Thomas Telford Services Ltd 1995. Atkins, H.N. Highway Materials, Soils, and Concretes, Reston Publishing Company, Virginia, USA, 4th edition, 2002. Bland, D.R. The Theory of Linear Viscoelasticity, Pergamon Press, New York, USA, 1960. Christensen, R.M. Theory of Viscoelasticity – An Introduction, Academic Press, New York, USA, 1971. IRC:44-2008 Guidelines for Cement Concrete Mix Design for Pavements, The Indian Roads 	design of puvellents.	Course Outcome				
 Understand the fundamentals of stress distribution within a pavement system Ability to analyse the stresses and design pavements with better performance and longer service life References Athanassios Nikolaides, Highway Engineering: Pavements, Materials and Control of Quality, CRC press, 2014. Richard Kim Y, Asphalt pavements, CRC press, 2014. Asphalt Institute. Mix Design Methods – For Asphalt Concrete and Other Hot-Mix Types, Manual Series No. 2 (MS-2), Asphalt Institute, Kentucky, USA, 1997. R. N. Hunter, Bituminous Mixtures in Road Construction, Thomas Telford Services Ltd 1995. Atkins, H.N. Highway Materials, Soils, and Concretes, Reston Publishing Company, Virginia, USA, 4th edition, 2002. Bland, D.R. The Theory of Linear Viscoelasticity, Pergamon Press, New York, USA, 1960. Christensen, R.M. Theory of Viscoelasticity – An Introduction, Academic Press, New York, USA, 1971. IRC:44-2008 Guidelines for Cement Concrete Mix Design for Pavements, The Indian Roads 	1. Select suitable materia		on.			
 Ability to analyse the stresses and design pavements with better performance and longer service life References Athanassios Nikolaides, Highway Engineering: Pavements, Materials and Control of Quality, CRC press, 2014. Richard Kim Y, Asphalt pavements, CRC press, 2014. Asphalt Institute. Mix Design Methods – For Asphalt Concrete and Other Hot-Mix Types, Manual Series No. 2 (MS-2), Asphalt Institute, Kentucky, USA, 1997. R. N. Hunter, Bituminous Mixtures in Road Construction, Thomas Telford Services Ltd 1995. Atkins, H.N. Highway Materials, Soils, and Concretes, Reston Publishing Company, Virginia, USA, 4th edition, 2002. Bland, D.R. The Theory of Linear Viscoelasticity, Pergamon Press, New York, USA, 1960. Christensen, R.M. Theory of Viscoelasticity – An Introduction, Academic Press, New York, USA, 1971. IRC:44-2008 Guidelines for Cement Concrete Mix Design for Pavements, The Indian Roads 						
References 1. Athanassios Nikolaides, Highway Engineering: Pavements, Materials and Control of Quality, CRC press, 2014. 2. Richard Kim Y, Asphalt pavements, CRC press, 2014. 3. Asphalt Institute. Mix Design Methods – For Asphalt Concrete and Other Hot-Mix Types, 4. Manual Series No. 2 (MS-2), Asphalt Institute, Kentucky, USA, 1997. 5. R. N. Hunter, Bituminous Mixtures in Road Construction, Thomas Telford Services Ltd 1995. 6. Atkins, H.N. Highway Materials, Soils, and Concretes, Reston Publishing Company, Virginia, USA, 4 th edition, 2002. 7. Bland, D.R. The Theory of Linear Viscoelasticity, Pergamon Press, New York, USA, 1960. 8. Christensen, R.M. Theory of Viscoelasticity – An Introduction, Academic Press, New York, USA, 1971. 9. IRC:44-2008 Guidelines for Cement Concrete Mix Design for Pavements, The Indian Roads				vice life		
 press, 2014. 2. Richard Kim Y, Asphalt pavements, CRC press, 2014. 3. Asphalt Institute. Mix Design Methods – For Asphalt Concrete and Other Hot-Mix Types, 4. Manual Series No. 2 (MS-2), Asphalt Institute, Kentucky, USA, 1997. 5. R. N. Hunter, Bituminous Mixtures in Road Construction, Thomas Telford Services Ltd 1995. 6. Atkins, H.N. Highway Materials, Soils, and Concretes, Reston Publishing Company, Virginia, USA, 4th edition, 2002. 7. Bland, D.R. The Theory of Linear Viscoelasticity, Pergamon Press, New York, USA, 1960. 8. Christensen, R.M. Theory of Viscoelasticity – An Introduction, Academic Press, New York, USA, 1971. 9. IRC:44-2008 Guidelines for Cement Concrete Mix Design for Pavements, The Indian Roads 						
 Richard Kim Y, Asphalt pavements, CRC press, 2014. Asphalt Institute. Mix Design Methods – For Asphalt Concrete and Other Hot-Mix Types, Manual Series No. 2 (MS-2), Asphalt Institute, Kentucky, USA, 1997. R. N. Hunter, Bituminous Mixtures in Road Construction, Thomas Telford Services Ltd 1995. Atkins, H.N. Highway Materials, Soils, and Concretes, Reston Publishing Company, Virginia, USA, 4th edition, 2002. Bland, D.R. The Theory of Linear Viscoelasticity, Pergamon Press, New York, USA, 1960. Christensen, R.M. Theory of Viscoelasticity – An Introduction, Academic Press, New York, USA, 1971. IRC:44-2008 Guidelines for Cement Concrete Mix Design for Pavements, The Indian Roads 		s, Highway Engineering: Pavements, Materials and	Control of Qua	ality, CRC		
 Asphalt Institute. Mix Design Methods – For Asphalt Concrete and Other Hot-Mix Types, Manual Series No. 2 (MS-2), Asphalt Institute, Kentucky, USA, 1997. R. N. Hunter, Bituminous Mixtures in Road Construction, Thomas Telford Services Ltd 1995. Atkins, H.N. Highway Materials, Soils, and Concretes, Reston Publishing Company, Virginia, USA, 4th edition, 2002. Bland, D.R. The Theory of Linear Viscoelasticity, Pergamon Press, New York, USA, 1960. Christensen, R.M. Theory of Viscoelasticity – An Introduction, Academic Press, New York, USA, 1971. IRC:44-2008 Guidelines for Cement Concrete Mix Design for Pavements, The Indian Roads 	•	It pavements, CRC press, 2014.				
 Manual Series No. 2 (MS-2), Asphalt Institute, Kentucky, USA, 1997. R. N. Hunter, Bituminous Mixtures in Road Construction, Thomas Telford Services Ltd 1995. Atkins, H.N. Highway Materials, Soils, and Concretes, Reston Publishing Company, Virginia, USA, 4th edition, 2002. Bland, D.R. The Theory of Linear Viscoelasticity, Pergamon Press, New York, USA, 1960. Christensen, R.M. Theory of Viscoelasticity – An Introduction, Academic Press, New York, USA, 1971. IRC:44-2008 Guidelines for Cement Concrete Mix Design for Pavements, The Indian Roads 	3. Asphalt Institute. Mix	Design Methods – For Asphalt Concrete and Other H	ot-Mix Types,			
 R. N. Hunter, Bituminous Mixtures in Road Construction, Thomas Telford Services Ltd 1995. Atkins, H.N. Highway Materials, Soils, and Concretes, Reston Publishing Company, Virginia, USA, 4th edition, 2002. Bland, D.R. The Theory of Linear Viscoelasticity, Pergamon Press, New York, USA, 1960. Christensen, R.M. Theory of Viscoelasticity – An Introduction, Academic Press, New York, USA, 1971. IRC:44-2008 Guidelines for Cement Concrete Mix Design for Pavements, The Indian Roads 	-					
 4th edition, 2002. 7. Bland, D.R. The Theory of Linear Viscoelasticity, Pergamon Press, New York, USA, 1960. 8. Christensen, R.M. Theory of Viscoelasticity – An Introduction, Academic Press, New York, USA, 1971. 9. IRC:44-2008 Guidelines for Cement Concrete Mix Design for Pavements, The Indian Roads 			Services Ltd 199	95.		
 Bland, D.R. The Theory of Linear Viscoelasticity, Pergamon Press, New York, USA, 1960. Christensen, R.M. Theory of Viscoelasticity – An Introduction, Academic Press, New York, USA, 1971. IRC:44-2008 Guidelines for Cement Concrete Mix Design for Pavements, The Indian Roads 		Materials, Soils, and Concretes, Reston Publishing C	ompany, Virgi	nia, USA,		
 Christensen, R.M. Theory of Viscoelasticity – An Introduction, Academic Press, New York, USA, 1971. IRC:44-2008 Guidelines for Cement Concrete Mix Design for Pavements, The Indian Roads 	7. Bland, D.R. The Theor	v of Linear Viscoelasticity, Pergamon Press, New Yo	ork. USA, 1960.			
1971.9. IRC:44-2008 Guidelines for Cement Concrete Mix Design for Pavements, The Indian Roads						
9. IRC:44-2008 Guidelines for Cement Concrete Mix Design for Pavements, The Indian Roads		,	, , , , , , , , , , , , , , , , , , , ,	- , - · - ,		
		nes for Cement Concrete Mix Design for Pavem	ents, The Ind	ian Roads		
10. Ministry of Road Transport and Highways. Specifications for Road and Bridge Works, Fifth						
Edition, Indian Roads Congress, New Delhi, India, 2013.						
11. Manual for construction and supervision of Bituminous works, MoRTH 2001.						
12. Yang H. Huang, Pavement Analysis and Design, 2nd Ed. Prentice Hall, 2003.						
13. Yoder and Witczak, Principles of Pavement Design, John Wiley and sons, 2007.						
14. Rajib B. Mallick and Tahar El-Korchi, Pavement Engineering – Principles and Practice, CRC Press,	CRC Press,					
2013.						
15. Latest revisions of IRC codes: IRC: 37-2012and IRC: 58 - 2013.	15. Latest revisions of IRC	codes: IRC: 37-2012and IRC: 58 - 2013.				

16. T. Papagiannakis, E. A. Masad, Pavement Design and Materials, John Wiley & Sons 2008.17. David Croney and Paul Croney, The design and performance of Road Pavements, 3rd edition, McGraw-Hill Publishing Co, 1997.

COURSE CODE	COURSE NAME	L-]	C-P (C)
08CE6203	PAVEMENT ANALYSIS AND DESIGN	3-)-0 (3)
Modules	Content	Contact Hours	Semester Exam Marks (%)
Ι	Pavement materials:Aggregates - requirements, properties and testing used, aggregate blending to meet specification.Bitumen - Types of bituminous binders. Tests on bitumen, physical properties, specifications for paving bitumen. Rheology of bituminous binders. Grading of bitumen.Bituminous Mixes - Design of bituminous mixes using Marshall method, and SUPERPAVE method. Types of bituminous mixes (HMA, WMA, SMA, etc.) and applications, Dynamic modulus, flow time, flow number, fatigue of bituminous mixes.Cement- grades, chemical composition, properties, admixtures, fibers, properties and testing of pavement quality concrete, high performance concrete	6	15
Π	Introduction to Pavements: Types of pavements,Flexible and rigid pavements: Functions of individuallayers, Highway and airport pavementsVariables Considered in Pavement Design: Trafficfactors, Material properties, Climatic effectsTraffic Analysis: ADT, AADT, Truck Factor, GrowthFactor, Lane Distribution and Vehicle Damage Factor	6	15
	FIRST INTERNAL EXAM		
III	Stresses and strains in flexible pavements: Stress inducing factors in flexible pavements, Vehicle- Pavement interaction, Stresses and deflections in homogeneous soil mass, Load equivalency factor, Burmister's layer theory: Solutions for one, two and three layered pavement systems.	6	15
IV	Methods of flexible pavement design: Principles ofMechanistic- Empirical Pavement Design (MEPD),Methods of flexible pavement design: IRC Method,Asphalt Institute Method, AASHTO Method.	8	15
	SECOND INTERNAL EXAM		Γ
V	Stresses in Rigid Pavements: Westergaard's theory and assumptions, Types of stresses: Wheel load stresses,	8	20

	Temperature stresses, Critical combination of stresses. Rigid pavement design methods: IRC method, AASHTO method and PCA method.				
VI	Design of reinforcements in cement concrete pavements Types of joints in cement concrete pavements – functions and requirements Joint spacing – Design of dowel bars and tie bars (IRC method). Introduction to softwares for design of pavements	8	20		
	END SEMESTER EXAM				

COURSE C	ODE		COURSE	NAME		L-'	Г-Р (С)	2017
08CE620)5	URBAN	N TRANSPOR	RTATION PL	ANNING		3-1-	0 (3)
		·	Course Ol	ojectives				
To give the Stud	ent:-							
1. Concepts of	the basic j	principles of	ransportation j	planning.				
2. Information	about late	est developme	nts taking plac	e in transportat	ion plannin	g of	urban area	s and
cities.								
3. Better analy	tical skill	and logical th	inking of stude	ents				
			Sylla	bus				
Urban Transpor	tation Plan	nning Process	s and concepts	s – transportati	on problem	is an	d solution	s, Systems
framework of pl	anning							
Methods of trave	el demand	l estimation -	Sequential, Re	cursive and Sir	nultaneous l	Proce	ess, zoning	5
Four stage plann	ing proces	ess – Trip gene	eration, trip dis	tribution, mode	e split and ro	oute	split	
Land use Transp	ortation N	Modeling						
			Course O					
	-			n area, if the ne	ecessary inp	ut ar	e given	
•		· ·	nowledge of p	e				
3. Enhancemen	it in analy	tical skill as v	<u> </u>	n solving and o	ptimizing al	oility	•	
			Refere					
		•	• •	ing, 9 th edition,				•
•			· ·	t Planning', Kł				
		-	-	ion System Pla			-	•
•		•	e e	ring - An Introc				3.
		•		ing, Hutchinso		n.197	5.	
•		-		ing, Tata McG				
7. C. S. Papac 2001.	ostas, Par	nos D. Preve	douros, Transı	portation Engin	eering and	Plar	nning, Pre	ntice Hall,
8. Dicky J.W.,	Metropoli	itan Transport	ation Planning	, Tata McGrav	7 Hill, 1980	•		
9. Mayer M an Primis, 2010		E, Urban Trar	sportation Pla	nning: A decis	ion oriented	l App	proach, Mo	Graw Hill
10. Prabir Kum	ar Sarkar,	•		, Transportatio	n Planning	Prin	ciples, Pra	ctices and
11. D. Johnson	C	g Pvt. Ltd., Do		nenortation. DI	onning On	arotic	n and Ma	nagamont
Tata Mc Gra			iy, Utball Ifal	nsportation. Ph	anning, Opt	51 at 10		magement,
12. Steven Ave Decision M 1999.	•		•	tation Corrido ortation Resear				

COURSE CODE	COURSE NAME	L-7	C-P (C)
08CE6205	URBAN TRANSPORTATION PLANNING	3-()-0 (3)
Modules	Content	Contact Hours	Semester Exam Marks (%)
Ι	Urban Transportation Planning Process & Concepts: Role of Transportation and Changing Concerns of Society in Transportation Planning; Transportation Problems and Problem Domain; Objectives and Constraints; Flow Chart for Transportation Planning Process- Inventory, Model Building, Forecasting and Evaluation Stages, Planning in System Engineering Framework; Concept of Travel Demand and its Modelling based on Consumer Behaviour of Travel Choices- Independent Variables, Travel Attributes.	8	15
II	Methods of Travel Demand Estimation: Assumptions in Demand Estimation- Sequential, Recursive and Simultaneous Process - Introduction to Transportation Planning Practices; Definition of Study Area, Zoning. Trip Generation Analysis: Trip Generation Models- Zonal Models, Category analysis, Household Models, Trip Attractions of Work Centres & Commercial Trips.	8	15
	FIRST INTERNAL EXAM		
III	Trip Distribution Analysis: Trip End and Trip Interchange Models; Trip Distribution Models - Growth Factor Models - Fratar and Furness models. Gravity Models, Opportunity Models and their calibration; Estimation of Travel Demand based on link volume philosophy.	6	15
IV	Mode Split analysis : Mode Split Analysis- Mode Choice Behaviour, Competing Modes, Mode Split Curves, Probabilistic Models and Two Stage Mode Split Analysis;	6	15
	SECOND INTERNAL EXAM		
V	Route Split Analysis- Elements of Transportation Networks, Coding, Minimum Path Tress, Diversion Curves, All-or-Nothing Assignment, Capacity Restrained Assignment, Multipath Assignment	6	20
VI	Traffic corridors:Master plans, Selection of Corridor, CorridorIdentification, Corridor deficiency Analysis	8	20

Role of GIS in Land Use and Transportation Planning.	
Introduction to transport planning softwares.	
END SEMESTER EXAM	

COURSE CODE	COURSE NAME]	L-T-P (C)	2017
08 CE6211	AIRPORT INFRASTRUCTURE PLANNING		3-0-0) (3)
	AND DESIGN			
	Course Objectives			
To give the Student:-				
1. Concept of planning an	nd designing of airport			
2. Knowledge of air traff	c controlling measures and techniques			
3. Engineering knowledg	e on structural and geometric design of airport			
	Syllabus			
Aircraft characteristics				
Air traffic management				
Airport planning and forec	-			
Airport lighting, markings	0			
Planning and design of terr				
Structural design of airport	pavement			
	Course Outcome			
•	atmospheric variables on aircraft performance.			
2. Fix the orientation of t	•			
	of the airport infrastructure.			
	gns of runway, taxiway, and apron-gate area.			
5. Prepare a master plan	*			
6. Prepare a plan of the a				
	References			
v	rancis X.Mckelvey, "Planning and Design of Airpo	orts	", McGraw	Hill, New
York, 1996				
•	ncis McKelvey, William Sproule, Seth Young, P	lan	ning and l	Design of
•	McGraw Hill Professional, 2010.			
	nd Amedeo Odoni, "Airport Systems Planning and De	sig	n", McGraw	Hill, New
York, 2003		_		
	systems – http://airportssystems.com/Course/index-htt			
	Arora, "Airport Planning and Design", Nem Chand an			р :
	kleh.A Mumayiz and Paul.H.Wright, "Airport Engi		•	0
•	1st Century Airports, 5 th Edn. John Wiley and sons, N		•	
7. Subhash C. Saxena, A	rport Engineering: Planning & Design, CBS Publishe	rs a	& Distributor	rs, 2008.

COURSE	COURSE NAME	L-]	Г-Р (С)
CODE			
08 CE6211	AIRPORT INFRASTRUCTURE PLANNING AND	3-0-0 (3)	
	DESIGN		
Modules	Content	Contact Hours	Semester Exam Marks (%)
Ι	Aircraft Characteristics: Landing gear configurations, aircraft weight, engine types. Atmospheric conditions affecting aircraft performance: air pressure, temperature, wind speed and direction. Aircraft performance characteristics: speed, payload and range, runway performance, declared distances, wingtip vortices.	6	15
Π	 Air Traffic Management: Air traffic separation rules: vertical separation, flight altitudes, longitudinal separation, and lateral separation. Navigational aids: ground based systems, satellite based systems. Airport Planning and Forecasting: Airport planning studies: airport system plan, airport site selection, airport master plan, airport project plan. Forecasting methods: time series method, market share method, econometric modelling. Forecasting requirements and applications: airport system plan, airport master plan. 	8	15
	FIRST INTERNAL EXAM		
III	Airport Lighting, Marking, and Signage : Requirements of visual aids, approach lighting system configurations, visual approach slope aids, threshold lighting. Runway lighting, taxiway lighting. Runway and taxiway marking, airfield signage.	6	15
IV	Planning and Design of the Terminal Area : Passenger terminal system and its components. Design considerations: terminal demand parameters, facility classification, level of service criteria. Terminal planning process: overall space requirements, concept development, horizontal distribution concepts, vertical distribution concepts. Apron gate system: number of gates, ramp charts, gate size, aircraft parking type, apron layout, apron circulation, passenger conveyance to aircraft, apron utility requirements.	6	15
	SECOND INTERNAL EXAM		
V	Geometric Design of the Airfield : Airport classification: utility airports, transport airports.	8	20

	Runways: runway configurations, runway orientation, wind rose, estimating runway length, sight distance and longitudinal profile, transverse gradient, airfield separation requirements, obstacle clearance requirements. Taxiways and taxilanes: widths and slopes, taxiway and taxilane separation requirements, sight distance and longitudinal profile, exit taxiway geometry, location of exit taxiways, design of taxiway curves and intersections, end-around taxiways. Aprons: holding aprons, terminal aprons and ramps, terminal apron surface gradients. Control tower visibility requirements.		
VI	Structural Design of Airport Pavements: Soil investigation and evaluation: CBR, plate bearing test, Young's modulus, effect of frost on soil strength, subgrade stabilization. FAA pavement design methods: equivalent aircraft method, cumulative damage failure method. Design of flexible pavements: CBR method, layered elastic design. Design of rigid pavements: Westergaard's analysis, finite element theory, joints and joint spacing, continuously reinforced concrete pavements. Design of pavement overlays.	8	20
	END SEMESTER EXAM		

COURSE CODE	COURSE NAME	L-T-P (C) 2017				
08 CE6213	MASS TRANSPORTATION PLANNING	IASS TRANSPORTATION PLANNING3-0-0 (3)				
	Course Objectives	· · · ·				
To give the Student:-						
1. An understanding of im	portance of Public Transportation and its planning co	ncept				
2. Contemporary knowledge	ge about the components of Transit operations and its	pricing				
3. Ability to plan transit ro	ute network based on the passenger demand					
	Syllabus					
Transit system: Types and	characteristics, Estimation of transit demand, Bus rou	ute network plan	ning,			
Scheduling, Mass transit c	orridor identification & planning, Mass transport mar	nagement measur	res, Bus			
stops and terminal designs						
	Course Outcome					
1. Ability to estimate tran	nsit demand and plan and schedule public transport ne	etwork				
2. Ability to identify and	▲					
3. Ability to propose suit	ableTransport management measures					
	References					
1. Black, A. Urban Mass T	Transportation Planning, McGraw-Hill International E	Enterprises, Inc.	1995.			
2. David A. Hensher, B	us Transport: Economics, Policy and Planning. R	esearch in Trar	nsportation			
Economics Volume 18. El	Economics Volume 18. Elsevier Publications, 2007.					
3. G.E. Gray and CA Hoel: Public Transport Planning Operation and Management, Prentice Hall; 2nd						
Edition, 1992						
4. P. Chakroborty and A. Das, Principles of Transportation Engineering, Prentice Hall of India Pvt. Ltd.,						
2003.						
5. Simpson, Barry J., Urban Public Transport Today. Taylor & Francis Routledge Publisher, 2003						

6. Susman, J. Introduction to Transportation Systems, Artech House Boston, London, 2000.

7. Tiwari G., Urban Transport for Growing Cities - High Capacity Bus System, MacMillan India Ltd., 2002

8. Tyler N., Accessibility and the Bus System – Concepts and Practice, Thomas Telford, 2002.

9. V.R. Vuchic, Urban Public Transport System and Technology, Prentice Hall Inc

10. Vuchic Vukan R., Urban Transit: Operations, Planning and Economics, Prentice Hall, 2005.

11. White, P., Public Transport: Its Planning, Management and Operation, Fourth Edition, London New York, 2002.

08 CE6213 MASS TRANSPORTATION PLANNING 3-0-0 (3) Modules Content Contact Hours Semester Exam Marks (%) Image: Content Transit system: Role of Transit - Types of Transit Modes - Buses - LRT, RTS - Air cushioned and Maglev System - S-Bahn Dual Mode Busses, Para Transit - Dial - a- Ride- Traxi- Timey and Ridesharing - PRT Networks -DRTS Technological Characteristics - Resistances, acceleration & velocity Profiles - Operational characteristics speed, capacity & payloads - Route capacity - Comfort conditions - Performance relationships - Public and Private Operations - Modes for Intercity Transport. 8 15 II Estimation of transit demand: Data requirements & Collection techniques, Conventional Methods - Destination Survey - Bus Stop Surveys and Analysis - Mode Split Models - Captive and Choice Riders - Attitudes of Travellers - Patronage Determination. 8 15 III Bus route network planning: Route Systems - Route Location, Route Structure, Route Coding Techniques, Route Capacity - Planning of Transit Network - Different Types - Service Area Coverage - Evaluation - Selection of Optimal Network - Path Building Criteria - Integration with UTPS. 6 15 IV Scheduling: Patterns of Bus Services - Frequency of Services - Special Services - Single Route Bus Scheduling - Fleet Requirement, Marginal Ridership Concept - Use of Optimisation Technique - Load Factor - Depot Location - Spacing of Bus Stops 8 20 V Mass transit corridor identification & planning: Corridor identification A Network Compression Method - Planning of Rapid Transit Sy	COURSE CODE	COURSE NAME	L-1	Г-Р (С)	
Modules Content Contact Hours Semester Exam Marks (%) Transit system: Role of Transit - Types of Transit Modes - Buses - LRT, RTS - Air cushioned and Maglev System - S-Bahn Dual Mode Busses, Para Transit - Dial - a - Ride- Taxi - Jitney and Ridesharing - PRT Networks -DRTS Technological Characteristics - Rescleration & 6 15 I Technological Characteristics - Rescleration & velocity Profiles - Operational characteristics speed, capacity & payloads - Route capacity - Comfort conditions - Performance relationships - Public and Private Operations - Modes for Intercity Transport. 6 15 II Estimation of transit demand: Data requirements & Collection techniques, Conventional Methods - Destination Survey - Bus Stop Surveys and Analysis - Mode Split Models - Captive and Choice Riders - Attitudes of Travellers - Patronage Determination. 8 15 III Bus route network planning: Route Systems - Route Location, Route Structure, Route Coding Techniques, Route Capacity - Planning of Transit Network - Different Types - Service Area Coverage - Evaluation - Selection of Optimal Network - Path Building Criteria - Integration with UTPS. 6 15 IV Fleet Requirement, Marginal Ridership Concept - Use of Optimisation Technique - Load Factor - Depot Location - Spacing of Bus Stops 6 15 V Mast transit Corridor identification & Planning: Corridor identification - Network Compression Method - Planning of Rapid Transit System - System Selection - Supporting and Enclosing Structures - System Selection - Supporting and Enclosing St		MASS TRANSPORTATION PLANNING	3-(3-0-0 (3)	
Buses - LRT, RTS - Air cushioned and Maglev System – S-Bahn Dual Mode Busses, Para Transi - Dial - a - Ride- Taxi - Jitney and Ridesharing – PRT Networks -DRTS Technological Characteristics – Resistances, acceleration & 6615ITechnological Characteristics – Resistances, acceleration & velocity Profiles – Operational characteristics speed, capacity & payloads – Route capacity – Comfort conditions - Performance relationships - Public and Private Operations - Modes for Intercity Transport.615IIEstimation of transit demand: Data requirements & Collection techniques, Conventional Methods - Destination Survey - Bus Stop Surveys and Analysis - Mode Split Models - Captive and Choice Riders - Attitudes of Travellers - Patronage Determination.815IIIBus route network planning: Route Systems - Route Location, Route Structure, Route Coding Techniques, Route Capacity - Planning of Transit Network - Different Types - Service Area Coverage - Evaluation - Selection of Optimal Network - Path Building Criteria - Integration with UTPS.615IVFleet Requirement, Marginal Ridership Concept - Use of Optimisation Technique - Load Factor - Depot Location - Spacing of Bus Stops615VMass transit corridor identification & Planning: Corridor identification - Network Compression Method - Planning of Rapid Transit System - System Selection - Supporting and Enclosing Structures - System Selection - System - Aesthetics and Noise Consideration - Cost of Construction - Station Arrangements - Platform Capacity - Fare Collection, Transit Marketing.820	Modules		Contact	Semester Exam	
IICollection techniques, Conventional Methods - Destination Survey - Bus Stop Surveys and Analysis - Mode Split Models - Captive and Choice Riders - Attitudes of Travellers - Patronage Determination.815FIRST INTERNAL EXAMBus route network planning: Route Systems - Route Location, Route Structure, Route Coding Techniques, Route Capacity - Planning of Transit Network - Different Types - Service Area Coverage - Evaluation - Selection of Optimal Network - Path Building Criteria - Integration with UTPS.615IVScheduling: Patterns of Bus Services - Frequency of Services - Special Services - Single Route Bus Scheduling - Fleet Requirement, Marginal Ridership Concept - Use of Optimisation Technique - Load Factor - Depot Location - Spacing of Bus Stops615VVMass transit corridor identification & planning: Corridor identification - Network Compression Method - Planning of Rapid Transit System - System Selection - Supporting and Enclosing Structures - System Selection - Supporting and Enclosing Structures - System Selection - Supporting and Enclosing Structures - System Selection - Track Structures - Power Supply and Distribution - Signal System - Aesthetics and Noise Consideration - Cost of Construction - Station Arrangements - Platform Capacity - Fare Collection, Transit Marketing.8	Ι	Buses - LRT, RTS - Air cushioned and Maglev System – S-Bahn Dual Mode Busses, Para Transit - Dial - a- Ride- Taxi- Jitney and Ridesharing – PRT Networks -DRTS Technological Characteristics – Resistances, acceleration & velocity Profiles – Operational characteristics speed, capacity & payloads – Route capacity – Comfort conditions - Performance relationships - Public and Private Operations	6	15	
IIIBus route network planning: Route Systems - Route Location, Route Structure, Route Coding Techniques, Route Capacity - Planning of Transit Network - Different Types - Service Area Coverage - Evaluation - Selection of Optimal Network - Path Building Criteria - Integration with UTPS.615IVScheduling: Patterns of Bus Services - Frequency of Services - Special Services - Single Route Bus Scheduling - Fleet Requirement, Marginal Ridership Concept - Use of Optimisation Technique - Load Factor - Depot Location - Spacing of Bus Stops615VMass transit corridor identification & planning: Corridor identification - Network Compression Method - Planning of Rapid Transit System - System Selection - Supporting and Enclosing Structures - System Evaluation - Track Structures - Power Supply and Distribution - Signal System - Aesthetics and Noise Consideration - Cost of Construction - Station Arrangements - Platform Capacity - Fare Collection, Transit Marketing.820	II	Estimation of transit demand: Data requirements & Collection techniques, Conventional Methods - Destination Survey - Bus Stop Surveys and Analysis - Mode Split Models - Captive and Choice Riders - Attitudes of	8	15	
IIILocation, Route Structure, Route Coding Techniques, Route Capacity - Planning of Transit Network - Different Types - Service Area Coverage - Evaluation - Selection of Optimal Network - Path Building Criteria - Integration with UTPS.615IVScheduling: Patterns of Bus Services - Frequency of Services - Special Services - Single Route Bus Scheduling - Fleet Requirement, Marginal Ridership Concept - Use of Optimisation Technique - Load Factor - Depot Location - Spacing of Bus Stops615VWass transit corridor identification & planning: Corridor identification - Network Compression Method - Planning of Rapid Transit System - System Selection - Supporting and Enclosing Structures - System Evaluation - Track Structures - Power Supply and Distribution - Signal System - Aesthetics and Noise Consideration - Cost of Construction - Station Arrangements - Platform Capacity - Fare Collection, Transit Marketing.820		FIRST INTERNAL EXAM		·	
IVServices - Special Services - Single Route Bus Scheduling - Fleet Requirement, Marginal Ridership Concept - Use of Optimisation Technique - Load Factor - Depot Location - Spacing of Bus Stops615SECOND INTERNAL EXAMVMass transit corridor identification & planning: Corridor identification - Network Compression Method - Planning of Rapid Transit System - System Selection - Supporting and Enclosing Structures - System Evaluation - Track Structures - Power Supply and Distribution - Signal System - Aesthetics and Noise Consideration - Cost of Construction - Station Arrangements - Platform Capacity - Fare Collection, Transit Marketing.820	III	Location, Route Structure, Route Coding Techniques, Route Capacity - Planning of Transit Network - Different Types - Service Area Coverage - Evaluation - Selection of Optimal Network - Path Building Criteria - Integration with	6	15	
Wass transit corridor identification & planning: Corridor identification - Network Compression Method - Planning of Rapid Transit System - System Selection - Supporting and Enclosing Structures - System Evaluation - Track Structures - Power Supply and Distribution - Signal System - Aesthetics and Noise Consideration - Cost of Construction - Station Arrangements - Platform Capacity - Fare Collection, Transit Marketing.820	IV	Services - Special Services - Single Route Bus Scheduling - Fleet Requirement, Marginal Ridership Concept - Use of Optimisation Technique - Load Factor - Depot Location - Spacing of Bus Stops	6	15	
VCorridor identification - Network Compression Method - Planning of Rapid Transit System - System Selection - Supporting and Enclosing Structures - System Evaluation - Track Structures - Power Supply and Distribution - Signal System - Aesthetics and Noise Consideration - Cost of Construction - Station Arrangements - Platform Capacity - Fare Collection, Transit Marketing.20				1	
	V	Corridor identification - Network Compression Method - Planning of Rapid Transit System - System Selection - Supporting and Enclosing Structures - System Evaluation - Track Structures - Power Supply and Distribution - Signal System - Aesthetics and Noise Consideration - Cost of Construction - Station Arrangements - Platform Capacity -	8	20	
\mathbf{v}_{1} = 101000 Hauston Hauston Hauston Herberg (1000000000000000000000000000000000000	VI	Mass transport management measures: RTC Act -	8	20	

ASRTU System Efficiency and Effectiveness Measures -			
Performance Indicators – LOPTS - Preferential Treatment			
to HOV: Exclusive Bus Lanes - Bus Streets - Contra Flows			
- Reversible Lanes - Bus Bypass - Bus Pre-emption Signals			
for Bus Operations.			
Bus stops and terminal designs: Type Design – Bus stop			
capacities – Bus Parking patterns at Terminals and			
Wayside Stations – Integration.			
END SEMESTER EXAM			

COURSE CODE	COURSE NAME	L-T-P(C)	2017
08 CE6215	ROAD SAFETY ENGINEERING	3-0-	0 (3)
	Course Objectives		
To give the Student:-			
1. The concept of road saf	ety management system		
2. knowledge about road s	afety based design techniques		
3. an understanding of me	thods of road safety audit and crash mitigation meas	ures	
	Syllabus		
Road safety management	-		
Analysis and interpretatio	n of crash data		
Road safety audits			
Crash reconstruction			
Crash mitigation measure			
4 4 1 4 00 0	Course Outcome		
•	driver characteristics, roadway characteristics, clima	tic factors on hig	ghway
safety.	1.6.1		
-	d safety improvement program.		
-	and suggest safety measures.		
4. Conduct road safety a			
5. Interpret accident data	a using statistical analysis. References		
1. Ezra Hauer, Observati	onal Before-After Studies in Road Safety, Pergan	on Press 1007	(roprinto)
2002).			
2. Institute of Transporta ITE, 1999.	tion Engineers (ITE), The Traffic Safety Toolbox: A	A Primer on Trat	ffic Safety
3. J. Stannard Baker, Tra 2002.	ffic Collision Investigation, Northwestern Universit	y Center for Put	olic Safety
4. Leonard Evans, Traffic	Safety, Science Serving Society, 2004.		
5. Lynn B. Fricke, Traffi 1990.	c Accident Reconstruction, Northwestern University	y Center for Pub	olic Safety
	ads: A Guide to Road Safety Engineering. Avebury	Technical, 1996.	
7. Popkess C.A, Traffic C	Control and Road Accident Prevention, Chapman and	l Hall, 1997	
1	Vaa, The Handbook of Road Safety Measures, Elsevi		
	atthew Karlaftis, and Fred Mannering, Statistical and		lethods fo
0	nalysis, Chapman & Hall/CRC Press, 2003.		
•	Developing country, TRL – ODA, 2004		
11. M. N. Shreehari, K. V	7. Ramesh, National Conference on Traffic Engine spects, Traffic Engineers & Safety Trainers, 2004.	ering and Road	I Safety in
	Proctor, Phil Cook, Practical Road Safety Auditing, I	I C E Publishino	. 2015
	sa Kate Anderson, Spatial Analysis Methods of Roa	-	

COURSE CODE	COURSE NAME	L-7	C-P (C)
08 CE6215	ROAD SAFETY ENGINEERING	3-()-0 (3)
Modules	Content	Contact Hours	Semester Exam Marks (%)
Ι	Introduction to safety: Road crashes, Trends, causes, Collision and Condition diagrams, Highway safety, human factors, Vehicle factors	6	15
П	Road Safety Management System: Multi-causal dynamic systems approach to safety, crash vs accident, road safety improvement strategies, elements of a road safety plan, Safety Data Needs.	6	15
	FIRST INTERNAL EXAM		
III	Statistical Interpretation and Analysis of CrashData:Before-after methods in crash analysis, Advancedstatistical methods, Black Spot Identification &Investigations, Crash data modeling - Case Studies.	6	15
IV	Road Safety Audits: Key elements of a road safety audit, Road Safety Audits & Investigations, Crash investigation and analysis, Describe methods for identifying hazardous road locations, Case Studies. Crash risk assessment programs.	6	15
	SECOND INTERNAL EXAM		
V	Crash Reconstruction: Describe the basic information that can be obtained from the roadway surface, Understand basic physics related to crash reconstruction, speed for various skid, friction, drag, and acceleration scenarios, variables involved in jump and flip crashes, variables involved in pedestrian crashes, Case Studies.	10	20
VI	Mitigation Measures: Crash prevention by better planning, and better design of roads, Crash Countermeasures, Highway operation and crash control measures, Highway Safety Measures during construction, Highway geometry and safety, Geometric Design Consistency and Safety.	8	20

COURSE CODE	COURSE NAME	Ι	L-T-P (C)	2017
08 CE6217	GROUND EXPLORATION TECHNIQUES		3-0-	0 (3)
	Course Objectives			
Objectives: To equip stud	lents with techniques of exploration, testing and eva	ıluat	ion for soil	parameters
required for foundation ch	oice and design			
	Syllabus			
Principles of exploration -	- modern methods of exploration - various field test	for	soil explorat	ion and its
property estimation - sam	apling techniques - types of samples - methods of	eval	uation and e	equipments
used in soil engineering –	settlement and heave gauges			
	Course Outcome			
1. To Understand The Im Activities.	nportance Of Ground Exploration Techniques In Civi	1 En	gineering Co	onstruction
	ern Ground Improvement Design Including Soil Stab	iliza	tion	
•	d Design A Subsurface Exploration Program Based			l Geologic
	tial Construction Problems.			
	k Core And/Or Soil Samples And Prepare Boring L	Logs	For Civil E	ngineering
Projects.		U		0 0
	References			
1. Lambe, Soil Testing for	or Engineers, John Wiley, New York, 1951.			
e e	Mechanics, John Wiley, New York, 1988.			
3. Terzaghi, K. and Peek	R.B., Soil Mechanics in Engineering Practice, 3rd ed	itior	n, John Wile	y, 1996.
4. Murthy V.N.S., Soil M	Iechanics and Foundation Engineering, CBS, 2009.			
5. Coduto, Man-chu Ro	nald Yeung and William A. Kitch, Geotechnical	Engi	neering Prir	ciples and
Practices, Pearson Edu	acation, 2nd edition, 2010.			
6. Joseph E., and Bowls,	Foundation Analysis and Design, McGraw Hill, 200	1.		
	dation Design and Construction, Prentice Hall; 7 edit			
8. Hausmann, M.R., En Editions, 1990.	gineering Principles of Ground Modification, McG	Braw	v – Hill In	ternational
	round Improvement Techniques, 2 nd edition, Laxm	i Pu	blications, N	lew Delhi
	ples, Practice and Design of Highway Engineering, S	s. Cł	and & Co. I	New Delhi
2012.				
	Reinforcement and Soil Structures, Butterworths, Lo			
12. J. Russell Boulding, ' 1996.	Subsurface Characterization And Monitoring Tech	niqu	es", Diane I	Publishing
13. Braja M. Das, Khaled	Sobhan, "Principles of Geotechnical Engineering", S	I Ed	ition, 2016.	
•	chanics Fundamentals, Wiley Blackwell.2015.			
	Aguettant, Lynne Roussel-Smith "Introduction to S	Soil	Mechanics	Laboratory
resulig, CKC Fless, 2017				

COURSE CODE	COURSE NAME	L-T-P (C)	
08 CE6217	GROUND EXPLORATION TECHNIQUES	3-()-0 (3)
Modules	Content	Contact Hours	Semester Exam Marks (%)
Ι	Principles of exploration; Modern methods of boring and drilling, exploration Techniques, non-displacement and displacement methods, drilling in difficult subsoil conditions, stabilization of boreholes Geophysical Methods – electrical method, seismic method.	7	15
Π	 Exploration Techniques Accessible exploration and Semi-direct methods, Test pits, Trenches, Shafts Bore holes – Drilling methods, equipments and applicable soil types – Auger boring, Wash boring, Rotary drilling, Percussion drilling Stabilization of boreholes 	7	15
	FIRST INTERNAL EXAM		
III	Field tests, penetration tests, procedures and methods, data interpretation, field vane shear, In-situ shear and bore hole shear test, pressure meter test, utility, correction and data interpretation, plate load test– monotonic and cyclic; field permeability test.	7	15
IV	Disturbed and undisturbed soil sampling, advanced sampling techniques, offshore sampling, types of samplers, design criteria for samplers, preservation and handling of samples	7	15
	SECOND INTERNAL EXAM		
V	Methods and equipments – interpretation of offshore exploration, Instrumentation in soil engineering - strain gauges - resistance and inductance type.	7	20
VI	Load cells, earth pressure cells - settlement and heave gauges - piezometers and slope indicators - inclinometer, case studies, data and report preparation	7	20
	END SEMESTE EXAM		

COURSE CODE	COURSE NAME	Ι	L-T-P (C)	2017	
08 CE6219	ENVIRONMENT IMPACT ASSESSMENT C)F	3-0-0	0 (3)	
	TRANSPORTATION PROJECTS				
	Course Objectives				
1. Develop a balanced vi	ew of the relationship between environment and dev	elop	ment		
	ing of the basic principles and technical and social li	mita	tions of an E	ΞIA	
3. Develop the skills to c	onduct an Environmental Impact Study				
	Syllabus				
	l definition of EIA -Legislations, laws and acts				
-	onal Environment Protection Act - EIA methodologie				
^	s - Application of EIA in Transportation - Assessmen		•	•	
	Air environment and noise - Socio-economic Imp			ental Risk	
Analysis- Energy Impact A	Analysis- EMP for air and noise environments- – Cas	se stu	ıdies		
	Course Outcome				
	to understand the existing environmental rules and le				
÷	asic knowledge and understanding of the role	of I	EIA in envi	ironmental	
management for sustai	* ·				
-	wareness regarding ecologically sustainable develo	-		ironmental	
friendly technologies a	and also the regulatory provisions for environmental	prote	ect		
	References				
	mental Impact Assessment, McGraw Hill New York				
	wid .C. Wooten, Environmental Impact Analysis	Hand	Book, Mc	Graw Hill,	
1980.					
	environmental Impact Assessment, M Land "Blacky				
-	nvironmental Engineering and Management, S.K. Ka				
	cornell, D.A. Introduction to Environmental Eng	ginee	ering, Mc (Jraw Hill	
International Editions				1	
	omic and Social Commission for Asia and Pacific,		0		
_	and Social Impact Assessment of Road Projects Guidelines for comprehensive process, New York,				
2001.	nomic Colonantion and Development End		Turne of A.		
-	nomic Co-operation and Development, Environme	ntal	impact Asse	essment of	
Roads, 1994.	onmontal Import Accessments A Department Could		MOTT IT 11 D	ofossional	
	onmental Impact Assessment: A Practical Guide,	wicG	raw Hill Pr	oressional,	
1997.					

COURSE CODE	COURSE NAME	L-T-	P (C)
08 CE6219	ENVIRONMENT IMPACT ASSESSMENT OF TRANSPORTATION PROJECTS	3-0-	0 (3)
Modules	Content	Contact Hours	Semester Exam Marks (%)
Ι	Introduction – Introduction to Environmental Impact Assessment (EIA)- Objectives and Needs- development of EIA - National Environmental Protection Act 1986 – Key features. Rapid EIA – Comprehensive EIA – Strategic EIA- procedure for EIA in India.	6	15
II	EIA methodologies –formulation of EIA team –inter disciplinary approach -Screening – Scoping - checklist, matrix and network methodologies - Identification of Impacts – Collection and documentation of baseline data –Need for Prediction and Mitigation Measures	6	15
	FIRST INTERNAL EXAM		1
Ш	Application of EIA in Transportation . Public participation in Environmental decision making - techniques for conflict management and dispute resolution in transportation projects. Role of GIS and RS in environmental impact assessment of transportation projects.	6	15
IV	Assessment and prediction of Impacts on Water Environment: Basic water quality, sources and effects of water pollution, assessment and prediction of impacts, Streeter Phelps equation and its application in EIA studies. Mathematical modelling for prediction of water pollution on account of transportation projects, mitigation measures, legislations.	8	15
	SECOND INTERNAL EXAM		1
V	 Assessment and prediction of Impacts on Air Environment: air quality, sources and effects of air pollution, assessment and prediction of impacts, Gaussian distribution for air pollution for point and line sources, mitigation measures, legislations. Assessment of Impacts of Noise – Basic information, sources and effects of noise pollution, control measures, legislations 	8	20
VI	Socio-economic impacts in EIA studies - Ecological impacts –Ecological foot-prints– Environmental Indices. Introduction to Environmental Management Systems - Cost Benefit Analysis - Environmental Audit - Life cycle	8	20

studies from India END SEMESTER EXAM			
	Assessment – Environmental Risk assessment – Case		

COURSE CODE COURSE NAME L-T-P (C) 2017 08GN6001 RESEARCH METHODOLOGY 0-2-0 (2) Course Objectives Course Objectives

To enable the students:

1. To get introduced to research philosophy and processes in general.

2. To formulate the research problem and prepare research plan

3. To apply various numerical /quantitative techniques for data analysis

4. To communicate the research findings effectively

Syllabus

Introduction to Research Methodology-Types of research- Ethical issues- Copy right-royalty-Intellectual property rights and patent law-Copy left- Open access-

Analysis of sample research papers to understand various aspects of research methodology:

Defining and formulating the research problem-Literature review-Development of working hypothesis-Research design and methods- Data Collection and analysis- Technical writing- Project work on a simple research problem

Course Outcome

Upon successful completion of this course, students will be able to

1. Understand research concepts in terms of identifying the research problem

2. Propose possible solutions based on research

3. Write a technical paper based on the findings.

4. Get a good exposure to a domain of interest.

5. Get a good domain and experience to pursue future research activities.

6. Prepare a thesis or a technical paper, avoid fallacious arguments and present or publish them

References

1. C. R. Kothari, Research Methodology, New Age International, 2004

2. Panneerselvam, Research Methodology, Prentice Hall of India, New Delhi, 2012.

3. J. W. Bames, Statistical Analysis for Engineers and Scientists, Tata McGraw-Hill, New York.

4. Donald Cooper and Pamela Schindler, Business Research Methods, 12th edition, Tata McGraw-Hill, New Delhi, 2014.

5. Leedy P. D., Practical Research: Planning and Design, 11th edition, McMillan Publishing Co. 2016.

6. Day R. A. and Barbara Gastel, How to Write and Publish a Scientific Paper, Greenwood Press, 2011.

7. Manna, Chakraborti, Values and Ethics in Business Profession, Prentice Hall of India, New Delhi, 2012.

8. Sople, Managing Intellectual Property: The Strategic Imperative, Prentice Hall ofIndia, New Delhi, 2012.

9. Michael C Labossiere, "42 Fallacies", Create Space Independent Publishing Platform, ISBN :1482753936, 9781482753936, 2013.

COURSE CODE	COURSE NAME	L-T-P (C)		
08GN6001	RESEARCH METHODOLOGY	0-2-0 (2)		
Modules	Content	Contact Hours	Semester Exam Marks (%)	
Ι	Introduction to Research Methodology: Motivation towards research - Types of research: Find examples from literature. Professional ethics in research - Ethical issues-ethical committees. Copy right - royalty - Intellectual property rights and patent law – Copy left- Open access -Reproduction of published material - Plagiarism - Citation and acknowledgement. Impact factor. Identifying major conferences and important journals in the concerned area. Collection of at least 4 papers in the area.	5	-	
II	Defining and formulating the research problem - Literature Survey- Analyze the chosen papers and understand how the authors have undertaken literature review, identified the research gaps, arrived at their objectives, formulated their problem and developed a hypothesis. FIRST ASSESSMENT	4	-	
III	Research design and methods: Analyze the chosen papers to understand formulation of research methods and analytical and experimental methods used. Study of how different it is from previous works. Thesis writing, reporting and presentation: significance of report writing— principles of thesis writing- different steps in report writing - Interpretation in writing – techniques of interpretation – precautions in interpretation - avoiding logical fallacies - format of reporting - layout and mechanics of research report - references – tables – figures – conclusions – oral presentation – preparation – making presentation – use of visual aids - effective communication - preparation for and presentation in seminars and conferences	4	-	
IV	Data Collection and analysis. Analyze the chosen papers and study the methods of data collection used Data Processing and Analysis strategies used – Study the tools used for analyzing the data.	5	-	
	SECOND ASSESSMENT		I	
V	Technical writing - Structure and components, contents	5	-	

	of a typical technical paper, difference between abstract		
	and conclusion, layout, illustrations and tables,		
	bibliography, referencing and footnotes- use of tools		
	like Latex.		
	Identification of a simple research problem – Literature		
VI	survey- Research design- Methodology -paper writing	5	-
	based on a hypothetical result.		
END SEMESTER ASSESSMENT			

COURSE CODE	COURSE NAME	Ι	L-T-P (C)	2017	
08CE6291	SEMINAR – I		0-0-2 (2)		
Course Objectives					

To enable the students:

1. To Identify the current topics in the specific stream.

2. To Collect the recent publications related to the identified topics.

3. To Do a detailed study of a selected topic based on current journals, published papers and books.

4. To Present a seminar on the selected topic on which a detailed study has been done.

5. To Improve the writing and presentation skills

Approach

Students shall make a presentation for 20-25 minutes based on the detailed study of the topic and submit a report based on the study.

Course Outcome

Upon successful completion of this course, students will be able to

1. Get good exposure in the current topics in the specific stream.

2. Improve the writing and presentation skills.

3. Explore domains of interest so as to pursue the course project.

COURSE CODE	COURSE NAME	L-T-P (C)			
08CE6293	PAVEMENT ENGINEERING LAB	0-0-2 (1)			
	Course Objectives				
To give the Student:-					
1. Knowledge to conduct	t different test for testing the suitability of various sub-gr	ade soil and aggregates			
used for pavement cor	astruction				
2. Ability to test the pro	perties of bitumen and various mix for use under differ	ent climatic conditions			
and type of pavement	construction				
3. Principles of design a	bituminous mix and to assess the strength and flexibility	of given mix.			
	Syllabus				
Tests on soil, Tests on aggregates, Tests on cement concrete, Tests on bitumen and bituminous mixes,					
Pavement evaluation					
Course Outcome					
1. Knowledge about vari	1. Knowledge about various properties required for different types of pavement constructions				
2. Knowledge about select	ction of different pavement construction materials based on	the properties.			
	References				

1. S.K. Khanna & C.E.G. Justo. Highway Engineering 9th edition, New Chand & Brothers, 2011.

2. S.K. Khanna & C.E.G. Justo. Highway material Testing, 1969.

3. IRC: SP: 19; 2001, Manual For Survey, Investigation & Preparation of Road Projects.

4. IRC:81-1997, Guidelines for Strengthening of Flexible Road Pavement using Benkelman beam Deflection Technique.

5. Khanna, S.K., Justo, C.E.G. and A. Veeraragavan Highway Materials and Pavement Testing, Nem Chand and Bros, Roorkee, India, 2013.

6. Huang, Y.H. Pavement Analysis and Design, Pearson Prentice Hall, New Jersey, USA, 2004.

7. Duggal, Ajay K., Puri, Vijay P.," Laboratory Manual in Highway Engineering" New Age International (P) Limited, Publishers, New Delhi 1991.

List of Experiments

Sl No.	Name of Experiment
Α	Tests on soil
1	Attenberg limits
2	Soil classification
3	Compaction test
4	California Bearing Ratio test
В	Tests on Aggregates
1	Shape test
2	Aggregate impact test
3	Los Angeles abrasion test
4	Stripping value
С	Tests on Cement Concrete
1	Normal Consistency Test
2	Sp. Gravity Test on Cement
3	Fineness test
4	Compressive strength of Cement
5	Tests on Fresh concrete-Workability
6	Tests on Fine Aggregates- Bulking of sand
D	Tests on Bitumen
1	Penetration test
2	Viscosity test
3	Softening point test
4	Specific Gravity
5	Flash and fire point test
6	Ductility test
7	Test on bitumen emulsion and cut back bitumen
Ε	Test on bituminous Mixes
1	Marshall Mix design and stability test
2	Indirect tensile strength test
3	Rut wheel test
4	Preparation and test on cold mixes
5	Bitumen extraction test
F	Pavement evaluation
1	Roughness measurement
2	Benkelman beam deflection studies and Analysis

SEMESTER II

COURSE CODE	COURSE NAME	L-T-P (C)	2017
08CE6202	REGIONAL TRANSPORTATION PLANNIN	G 3-1-0) (4)
	Course Objectives		
To give the Student:-			
1. practice in developing for	precasting models for demographic and employment	opportunities	
2. input for delineating reg			
3. awareness in influence of	of land use changes in transportation planning		
4. knowledge in network p	lanning and evaluation		
5. ability to develop optime	um bus route network and schedule		
	Syllabus		
Demographic and Employ	ment forecasting models		
Theories of regional development	opment and delineation of planning regions		
Land use transportation pla			
Regional travel demand es			
Regional network planning			
Urban bus transportation p	lanning and evaluation		
	Course Outcome		
1. Ability to delineate re	gions, estimate and forecast travel demand from reg	gions accommod	lating land
use.			
2. Ability to generate and	l evaluate optimum network		
	References		
1. Barra, T. D., Integra	ated Landuse and Transport Modelling: Decision	Chains and H	ierarchies,
Cambridge University			
	roduction to Transportation Planning (The Living H	Environment), U	CL Press,
London, UK, 2000.			
•	nt Lall, Transportation Engineering, Prentice Hall of I		
-	P.D. Prevedouros, Transportation Engineering and I	Planning, Prenti	ce Hall of
India Pvt. Ltd., 2001.			
•	tan Transportation Planning, Script Book Co., Washi	-	
	nsportation Planning Handbook, Second Edition, In	stitution of Tran	isportation
Engineers, 1999.			
e e	al and Urban Models in Geography and Planning, Wil	•	
	nsportation: A Geographical Analysis, Guilford Press		
	Ramanayya, Public Transport Planning and Ma	nagement in D	Developing
Countries, CRC Press,			
	Applied Models in Urban and Regional analysis, Prem		
	Gerard de Jong, Modelling Freight Transport, Elsevi		
• •	Planning: Models and Methods (Chapter 4) CRC Pre		
· • •	ht Manual II - Publication No. FHWA-HOP-08-010,	-	
	n Transportation Networks – Equilibrium Ana	lysis with Ma	thematical
Programming Methods	s, Prentice Hall, 1985.		

COURSE CODE	COURSE NAME	L-7	C-P (C)
08CE6202	REGIONAL TRANSPORTATION PLANNING	3-1-0 (4)	
Modules	Content	Contact Hours	Semester Exam Marks (%)
Ι	Demographic and Employment Forecasting Models : Demographic Models - Linear, Exponential and Logistic Models; Cohort Survival Models - Birth, Aging and Migration Models; Employment Forecasting Models - Economic base Mechanism; Population and Employment Multiplier Models- Input and Output Models - Dynamic Models of Population and Employment – Multiregional Extensions	8	15
П	Theories of Regional Development & Delineation of Transportation Planning Regions : Concept of Region and Space – Types of Regions – Classification of Regions – Christaller's and Perouxian Theories of Regional Development - Delineation of Regions for Transportation Planning of a Nation.	8	15
	FIRST INTERNAL EXAM		I
III	Landuse transportation models: Classification of LUT Models, Economic Base Mechanism, Allocation Mechanism and Spatial Allocation and Employment Relationships, Garin Lowry Models, Contribution by Putman and Wilson, Issues Related to Landuse Transport - Interaction, Case Study Examples.	9	15
IV	Regional Freight travel demand estimation : Factors Affecting Goods Flows, Use of Mathematical Models to Estimate Freight Demand, Abstract Mode Models, Mode Specific Models, Direct Demand Models, IVF Models, IO Model, Case Studies, Truck Terminal location – planning	9	15
	SECOND INTERNAL EXAM		
V	Regional network planning : Problems in Developing Countries, Network Characteristics - Circuity, Connectivity, Mobility, Accessibility and Level of Service Concepts - Network Structures and Indices – Network Planning – Evaluation - Graph Theory – Cut sets – Flows & Traversing – Optimum Network - Inter- modal Co-ordination.	11	20
VI	Urban Bus Transportation Planning and Evaluation : Introduction to Bus Network Design, Classification of	11	20

	Routes and their Alignment, Prediction of Transit	
	Usage, Evaluation of Network, Accessibility	
	Consideration in Route Frequency Analysis, Marginal	
	Ridership for Dispatching Buses on Route, Scheduling	
	of Buses and Minimum Wait Schedule.	
END SEMESTER EXAM		

COURSE	CODE	COURSE NAME		L-T-P(C)	2017
08CE6	204	PAVEMENT CONSTRUCTION, EVALUAT	ΓΙΟΝ	3-0-0	0 (3)
		AND MAINTENANCE			
		Course Objectives			
To give the stu	dent				
1. Knowledg	e about rece	ent developments in construction practices and equ	iipmen	t.	
2. Awareness	about the i	mportance of pavement condition evaluation and p	predicti	ion	
	•	arious types of distresses, causes and remedies			
4. Awareness	about vario	bus maintenance strategies.			
		Syllabus			
	^	pavement construction equipments, preparation		•	
pavement, prep	aration of	rigid pavement, superpaves, new types of paver	nents.	Pavement ev	valuation -
Pavement Perfo	rmance, Se	rviceability concept, Pavement distresses, paveme	ent con	dition index,	roughness
characteristics a	and its deter	mination - structural evaluation - pavement main	tenance	Э.	
		Course Outcome			
Students will b	e able to				
-	· ·	abilization technique as per the site requirements.			
-		nstruction practices adopted in the construction of			
3. Ability to	evaluate the	pavement condition using functional and structur	al meth	nods.	
		References			
1. Mallick, R	.B. and T.	El-Korchi Pavement Engineering – Principles and	l Practi	ice, CRC, Pre	ess, Taylor
and Franci	s Group, Fl	orida, USA, 2009.			
2. Peurifoy, I	R.L., Constr	uction, Planning, Equipment and Method - McGra	aw Hill	Book Co.20	10.
3. Shahin, M	.Y, Paveme	nt Management for Airports, Roads and Parking le	ots, Ch	apman & Hal	11, 2005.
	Iudson. W.	Zaniewsk John, Modern Pavement Management,	Kreige	er Publishing	Company,
1994.					
		ction Equipment and its Management", Khanna P	ublishe	ers, 1995.	
6. Relevant I					
•		rtation Engineering, Khanna Publishers, 2016			
8. Bruce K. F	² erguson, Po	prous Pavements, CRC Press, 2005.			

COURSE CODE	COURSE NAME	L-T-P (C)	
08CE6204	PAVEMENT CONSTRUCTION, EVALUATION	3-0-0 (3)	
	AND MAINTENANCE		
Modules	Content	Contact Hours	Semester Exam Marks (%)
	Soil stabilization of subgrade: Types of stabilization,		
Ι	Selection of stabilizers, Stabilisation with pozzolanic	8	15
	materials and bitumen.		
	Pavement Construction - Construction equipments,		
П	Construction and preparation of subgrade soil, sub-base,	10	15
II	base and surface layers – construction of cement concrete	10	15
	surface layers - MoRT&H specifications		
	FIRST INTERNAL EXAM		
	New types of pavement - super pave concept, new	^{5,} 8	
III	materials like polymer modified bitumen, geo synthetics,		15
111	interlocked pavements. Applications of geosynthetics in		15
	pavements.		
	Pavement evaluation: Types of Surveys; Distress		
	Surveys, condition survey; Pavement Distress Indices;		
IV	Pavement Condition Survey -Pavement Condition	8	15
1 V	Index(PCI) - Estimation of PCI by Shahin's Deduct	0	15
	value method- Pavement surface condition: Skid		
	resistance		
	SECOND INTERNAL EXAM		
	Characterisation of roughness- Equipments for		
	measuring roughness, profile indices, International		
V	Roughness Index (IRI), Factors affecting pavement	12	20
v	structural condition, Structural Capacity, Structural	14	20
	evaluation by Non- Destructive Tests, Types -		
	Benkelman Beam Deflection (BBD) measurement		
	Pavement Maintenance: Routine maintenance, periodic		
VI	maintenance, special repairs. Responsive maintenance	10	20
	programme, rehabilitation and reconstruction.		
	END SEMESTER EXAM		•

COURSE CODE	COURSE NAME	L-T-P(C)	2017	
08CE6206	ADVANCED TRAFFIC ENGINEERING	3-0-0	0 (3)	
Course Objectives				
To give the Student:-				
1. An introduction to the f	undamentals of traffic operations at uninterrupted fac	ilities, theories o	of traffic	
flow.				
• • •	leuing behavior of vehicles at various traffic scenario			
3. Introduction to simulation	on models and improve the knowledge in advanced the	neories of traffic	flow.	
	Syllabus			
Traffic Flow Modelling,	Traffic flow characteristics, various traffic stream	n models, Car	following,	
	flow modelling analogies, Shock waves and bottlene	-	-	
	d traffic. Fundamentals of queuing theory. Capac	city and Level	of Service	
Simulation in Traffic Engi				
	Course Outcome			
	alyse and evaluate traffic stream performance.			
•	ious traffic flow models, flow along bottle necks, sho	ckwave phenom	enon	
	nd service characteristics			
	ervice of traffic infrastructure facilities.			
4. Traffic simulation mod				
	References			
	V., "Traffic System Analysis for Engineers and Plann		Hill, 1967.	
	R P, "Traffic Engineering", 4 th Edition, Prentice-Hal	I, NJ, 2011.		
•	w fundamentals", Prentice Hall, NJ, 1990.	0.60		
	w Theory and Control", Mc. Graw Hill New York, 1			
	al, Transportation Research Board, Washington, D.C		1	
-	ilaresky W. P. "Principles of Highway Engineering	and Traffic Ana	alysis", 5 th	
Edition, John Wiley and S				
 Neylor T. H. "Computer Simulation Techniques", John Wiley, 1966. Traffic Flow Theory: A State-of-the-Art Report, TRB, Available for free download at 				
	-	for free dov	white at	
http://www.tfhrc.gov/its/tf		100		
	roduction to the Theory of Traffic Flow, Springer, 19		and Canadi-1	
•	uber, Matthew J, Traffic Flow Theory, Transportation	JII Kesearch Boa	uu special	
Report, Issue Number: 163	5, Transportation Research Board, 1976.			

COURSE CODE	COURSE NAME	L-T-P (C)	
08CE6206	ADVANCED TRAFFIC ENGINEERING	3-0-0 (3)	
Modules	Content	Contact Hours	Semester Exam Marks (%)
Ι	Traffic Flow Modelling : Traffic stream models: Traffic flow characteristics, Greenshield's model, Greenberg's logarithmic model, Underwood's exponential model, pipe's generalized model, multi-regime models;	6	15
Π	Use of Counting, Interval and Translated Distributions for Describing Vehicle Arrivals, Headways, Speeds, Gaps and Lags; Fitting of Distributions, Goodness of Fit Tests.	6	15
	FIRST INTERNAL EXAM		
III	Traffic flow modelling analogies: Fluid flow analogy, heat flow analogy, granular flow, Lighthill-Withams theory, Boltzman like behaviour of traffic. Flow concepts including shock waves and bottleneck. Flow models under mixed traffic. Car following, acceleration noise.	6	15
IV	Fundamentals of Queuing Theory, Demand Service Characteristics. Deterministic Queuing Models, Stochastic Queuing Models, Multiple Service Channels, Models of Delay at Intersections and pedestrian Crossings.	6	15
	SECOND INTERNAL EXAM		I
V	Highway capacity analysis: Capacity and level of service concepts; Factors affecting capacity and LOS; capacity of rural highways, Urban arterials; Capacity Analysis of Different Highway Facilities, Passenger Car Units, Problems in Mixed Traffic Flow.	9	20
VI	Simulation Models: Philosophy of Simulation Modelling, Formulation of Simulation Model, Methodology of System Simulation, Simulation Languages, Generation of Random Numbers, Generation of Inputs – Vehicle Arrivals, Vehicle Characteristics, Road Geometrics, Design of Computer Simulation Experiments, Analysis of Simulation Data, Formulation of Simulation Problems in Traffic Engineering and Validation. END SEMESTER EXAM	9	20

COURSE CODE COURSE NAME L-T-P (C) 2017 08CE6212 GEOSYNTHETICS FOR HIGHWAY DESIGN 3-0-0 (3)

Course Objectives

1. To know about different types of geosynthetics used for pavement construction.

2. To study about various properties and testing of geotextiles

3. Identify potential areas of application in pavements, how it is applicable and its design

Syllabus

Introduction to geosynthetic, Geotextiles : Types, Manufacturing Methods, Functions, Basic Properties: Physical, Mechanical, Hydraulic, Constructability, Durability Testing and Evaluation: Test Condition, Sampling, Testing Methods Pavement Applications: Giroud and Noiray approach, Crack Control, Uses in paved roads Applications: Filtration and Drainage, Embankments, Retaining walls, Rigid and Flexible pavements, AASHTO design.

Course Outcome

1. Understand various types of geosynthetics

2. Understand potential areas of application of geotextiles, its testing standards.

3. Acquire capability for selection, design of geosynthetics for various applications

References

1. Koerner, R.M. Designing with Geosynthetics, 6th Edn., Xlibris Corporation, 2012.

2. G.V. Rao, PK Banerjee, J.T. Shahu, G.V. Ramana. Geosynthetics - New Horizons, Asian Books Private Ltd., New Delhi, 2004.

3. G. Venkatappa Rao, Geosynthetics-An Introduction, Sai Master Geo environmental Services Pvt Ltd., Hyderabad, 2011.

4. G. Venkatappa Rao & Goutam K. Pothal, Geosynthetics Testing-A Laboratory Manual, Sai Master Geoenvironmental Services Pvt Ltd., Hyderabad, 2008.

5. Rao G.V. & Rao G.V.S., "Text Book On Engineering With Geotextiles", Tata Mc Grawhill, 1990.

6. Rao G.V & Balan. K, Coir Geotextiles-emerging trends, Kerala state coir corporation Alappuzha, 2002.

8. J.N. Mandal, "Geosynthetics World", New Age International Private Limited, 1994.

9. G.L Siva Kumar Babu, "An Introduction to Soil Reinforcement and Geosynthetics", university press (India) private limited Hyderabad, 2006.

COURSE CODE	COURSE NAME	L-T-P (C)	
08CE6212	GEOSYNTHETICS FOR HIGHWAY DESIGN	3-0	0-0 (3)
Modules	Content	Contact Hours	Semester Exam Marks (%)
Ι	Historical background of reinforced soil, Principles of reinforced soil through Mohr circle analysis. Types of geosynthetics like geotextiles, geogrids, geonets, geocells, geo-composites, their manufacturing methods.	6	15
П	Geotextiles-overview, introduction, types including natural geotextiles, manufacturing methods, Functions of Geotextiles- fluid transmission, filtration, separation, protection, Sediment Control, Reinforcement, design principles and influencing factors	8	15
	FIRST INTERNAL EXAM		
III	Basic Properties- physical(Mass per unit area, thickness, compressibility, apparent opening size, width and length), mechanical(Tensile strength, narrow strip tensile test, grab test, strip and wide width tensile test, seam testing, interface friction, creep resistance), hydraulic, constructability/survivability (puncture test, CBR push through test, trapezoidal tear test, diaphragm bursting strength test, cone drop test), durability (abrasion resistance, ultra-violet resistance, temperature stability, chemical stability)	8	15
IV	Testing and Evaluation- importance of testing, test conditions, sampling, testing methods- Techniques for testing of different index properties, strength properties, Apparent Opening Size, In-plane and cross-plane permeability tests, assessment of construction induced damage, extrapolation of long term strength properties from short term tests.	6	15
	SECOND INTERNAL EXAM		1
V	Pavement Applications- Paved Surface Rehabilitation, Reflective Crack Treatment for Pavements, Geotextiles for separation and reinforcement in flexible pavements, design by Giroud-Noiray, improvement of bearing capacity using geotextiles Use of geotextiles for construction of heavy container yards and railway lines. Applications in Bituminous Pavements- Model study on Geotextile Reinforced Asphaltic	8	20

	Concrete			
VI	Applications- Filtration and Drainage: geotextile filter requirements, drain and filter properties, design criteria. Embankments in soft soil: stability analysis, influence of reinforcement extensibility, relationships for design, settlement analysis; soil retaining walls: components, principles of design; Reinforcement design applications in rigid and flexible pavements, AASHTO design criteria; construction methods	6	20	
END SEMESTER EXAM				

08CE6214

COURSE NAME

L-T-P (C) 2017

GIS AND ITS APPLICATIONS IN TRANSPORTATION ENGINEERING

Course Objectives

- 1. Explain the basic concepts of GIS and different data models in GIS
- 2. Explain different data management and analysis techniques in GIS.

Syllabus

Coordinate systems, georelational vector data model, object based vector data model, raster data model, geometric transformations, Attribute data input and management, data exploration and vector and raster data analysis

Course Outcome

- 1. Practical knowledge in using GIS softwares like ArcGIS, MapInfo etc
- 2. Apply GIS techniques in different real world transportation engineering problems

References

- 1. Kang-Tsung Chang, Introduction to Geographic Information Systems, Tata McGraw Hill Publishing Company Ltd, New Delhi, 2008.
- 2. Lo C.P. & Yeung A.K.W., Concepts and Techniques of Geographic Information Systems, Pearson; 2 edition, 2006.
- 3. De Mers, M.N., Fundamentals of Geographic Information Systems, 4th edition, John Wiley & Sons, New York, 2008.
- 4. Peter A. Burrough and Rachael A. McDonnell, Principles of Geographical Information Systems, Oxford University Press, 2005
- 5. Clarke, K., Getting Started with Geographic Information Systems, Pearson; 5 edition, 2010.
- 6. Geo Information Systems Applications of GIS and Related Spatial Information Technologies, ASTER Publication Co., Chestern (England), 1992
- 7. Jeffrey, S. & John E., Geographical Information System An Introduction, Prentice-Hall, 1990
- Marble, D.F., Galkhs HW & Pequest, Basic Readings in Geographic Information Systems, Sped System Ltd., New York, 1984.
- 9. GIS for Urban & Regional Planning, Scholten & Stillwen 1990, Kulwer Academie Publisher.
- 10. Geographical Information System, Volume I: Principal and Technical Issues, Edited by P.A.Longley, M.F. Goodchild, D.J. Manguire, D.W. Rhino, John Wiley & Sons, 1999.
- 11. Geographical Information System: Volume II: Management Issues and Applications, Edited By P.A. Longley, M.F. Goodchild, D.J. Manguire, D.W. Rhino, John Wiley & Son, 2005.

COURSE CODE	COURSE NAME	L-T-P (C)	
08CE6214	GIS APPLICATIONS IN TRANSPORTATION ENGINEERING	3-(0-0 (3)
Modules	Content	Contact Hours	Semester Exam Marks (%)
Ι	 Introduction: Introduction to GIS,- definition– Components of GIS – Applications of GIS. Types of Geo-Spatial Data: Spatial and non-spatial data, Vector and raster data, Primary and secondary data, Characteristics and sources of spatial data, attribute data. Map Projection: Types of Projection–Cylindrical projection, Conical projection, Selection of a particular projection Coordinate Systems: Geometric models of earth, Geographic and projected coordinate system 	6	15
Π	 Data models: Topological and non-topological vector data, Topology rules, georelational data model, object based data model, Interface- Encapsulation, Inheritance, Polymorphism Data models for Composite features; TIN, Region and Routes. Raster data model- nature and elements, types, data storage, data compression, Data conversion. 	8	15
	FIRST INTERNAL EXAM		
III	Geometric transformation- map to map and image to map transformations, transformation methods, Affine transformation, RMS error, Resampling, pyramiding, Geospatial Data quality and standards: Data quality- accuracy, precision, errors, uncertainty, sources of errors, components and assessment of data quality, Data standards- classification of standards in GIS, components, international geospatial data standards. Spatial data editing- errors, topological and non topological editing. Attribute data input and management- type of attribute data, Relational model, normalization, types of relationships, attribute data entry. (Exposure to GIS tools	6	15
IV	 can be given through assignments or mini projects) Data exploration and analysis: Data exploration- descriptive statistics, graphics, attribute data and spatial 	6	15

	data query, map manipulation. Vector data analysis- buffering, overlay, slivers, distance measurement, pattern analysis, Raster data analysis- Local operations- reclassification, neighborhood operations, zonal operations, physical distance measurement SECOND INTERNAL EXAM		
	Application of GIS in Transportation Planning:		
V	Application of GIS in Transportation Transportation information system for road accessibility study, location of transport terminals and roadside facilities, bus stops, Decision support systems for land use planning, Applications of Aerial Photography and Satellite Imageries.	8	20
VI	Application of GIS in Highway and Traffic Engineering: GIS based Highway alignment, GIS based road network planning, GIS based traffic congestion analysis and accident investigation, – Route optimization – Bus route rationalization Utility management, GIS applications in environment impact assessment and environment monitoring, case studies END SEMESTER EXAM	8	20

COURSE CODE	COURSE NAME	L-T-P (C)	2017	
08CE6216	OPERATIONS RESEARCH	3-1-0 (3)		
Course Objectives				
1. To introduce the method	s of Operations Research			
2. Emphasize the mathema	tical procedures of linear and non linear programming			
	Syllabus			
Introduction to Operations	Research-Formulation of LPPSimplex Method, Duality	y Theory- Sei	nsitivity	
Analysis-parametric progra	amming: Integer Programming-cutting plane method-mix	xed integer		
programming-branch and b	bound methods. Inventory models-Models with determining	istic demand	– Non	
linear programming-Langa	range multiplier method- Kuhn Tucker conditions-Quad	ratic program	ıming.	
	Course Outcome			
1. Proficiency in tools in o	ptimization			
2. To enable the students to	build models for simple problems in managerial decision	on making a	nd utilise	
proper mathematical method	ods to solve these models			
	References			
1. Bazaraa M S, Jarvis & I	herali H D, Linear Programming and Network flows, 4th	edition, John	1 Wiley &	
Sons, Singapore 2009.				
2. Bazaraa M S, Sherali	H D & Shetty, C. M, Non Linear Programming, The	ory & Algor	rithms 2nd	
edition, John Wiley & Sons	, Singapore 1995.			
3. Goel B S and Mittal S K	' Operations Research', Pragati Prakashan, 2014.			
4. Taha, Hamdy, Operations Research, 9th edition, Pearson, 2010.				
5. Wayne L Winston, Operations Research: Applications and Algorithms, Indian University, 4th edition,				
2004				
6. Mitsuo Gen, Runwei C 2000	heng, Genetic Algorithms and Engineering Optimization	n, John Wiley	y & Sons,	

COURSE CODE	COURSE NAME	L-7	C-P (C)
08CE6216	OPERATIONS RESEARCH	3-()-0 (3)
Modules	Content	Contact Hours	Semester Exam Marks (%)
Ι	Introduction to Operations Research: Basics definition, scope, objectives, phases, models and limitations of Operations Research. Linear Programming Problem – Formulation of LPP, Simplex Method, Artificial variables, Big-M method, two-phase method, degeneracy and unbound solutions.	6	15
Π	Duality Theory, The Primal Vs- Dual-Solutions. Sensitivity Analysis: Changes in Objective-Function Sensitivity Analysis: Changes in RHS revised simplex method –parametric programming	6	15
	FIRST INTERNAL EXAM		
III	Integer programming-relevance of integer variables and relevance of integer programming- formulation of problems with binary variables-cutting plane method- mixed integer programming-branch and bound methods.	8	15
IV	Inventory models. Inventory costs. Models with deterministic demand – demand rate uniform and production rate infinite - demand rate non-uniform and production rate infinite - demand rate uniform and production rate finite	8	15
	SECOND INTERNAL EXAM		
V	Non linear programming-multi-variable optimisation with equality constraints- Langarange multiplier method-optimisation in the presence of inequality constraints-convexity and role in optimization- Kuhn Tucker conditions	8	20
VI	Quadratic programming-Wolf's method- Beale's method-Frank &Wolfe Method, Reduced Gradient method, Gradient projection method, convex simplex method,	6	20
	END SEMESTER EXAM		

COURSE CODE	COURSE NAME	L-T-P	(C)	2017
08CE6218	TUNNEL ENGINEERING		3-0-0) (3)
	Course Objectives	1		
To give the Student:-				
1. Awareness about suitable	ility of site for tunneling and method of tunneling	that can be a	dopted	
2. Knowledge about variou	us methods of tunnel designing and support design	ing		
3. Information regarding e	excavation and construction methods for different s	soil condition	ı	
4. Concept of planning and	d designing of tunnels with less hazards, with prop	er environm	ent mar	agement
	Syllabus			
Geotechnical consideration	ns of tunneling – site investigation			
Design of tunnels – Empir	rical, observational, analytical and numerical method	ods		
Construction and excavation	on methods – Hard rock, soft rock, shallow excava	ation and dee	ep excav	vation
Tunnel support design - ro	ock reinforcement, concrete and shortcrete lining, l	NATM		
Health, safety and environ	ment considerations – identification of hazards, ty	ypes and mit	igation	measures
risk assessment, environm	ental management related to tunneling			
	Course Outcome			
1. Ability to understand t	the type and method of tunneling required for diffe	erent type of	soil	
2. Ability to plan and d	design tunnels and tunnel supports with conside	eration for h	ealth, s	afety an
environment.				
	References			
1. Z T Bieniawski, Rock	Mechanics Design in Mining & Tunneling, A.A.	Balkema,198	34	
2. Hoek, E, Brown, E T,	Underground Excavations In Rock, Transport Res	earch Labor	atory, 1	980.
3. John Olusegun Ogun	dare, Precision Surveying: Principles and Geom	natics Practic	e,John	Wiley &
Sons, 2015.				
4. Thomas R. Kuesel, E	Wwyn H. King, John O. Bickel, Tunnel Enginee	ering Handbo	ook, 2n	d edition
Springer Science & Bu	usiness Media, 2012.			
5. Whittaker, B N, Frith	n, R C, Tunnelling: Design, Stability And Const	truction, Tra	nsport	and Roa
Research Laboratory (TRRL), 1990.			
6. Megaw, T M, Bartlet	tt, J V, Tunnels. Planning, Design, Construction	n. Volume 1	, Ellis	Horwood
1982.				

COURSE CODE	COURSE NAME	L-7	C-P (C)
08CE6218	TUNNEL ENGINEERING	3-()-0 (3)
Modules	Content	Contact Hours	Semester Exam Marks (%)
Ι	Geotechnical Considerations of tunneling - Geological, geotechnical and hydrological contexts, Planning a site investigation for a tunnel, Site investigation methods for tunnels in different ground conditions, Geophysical methods Hydrogeological investigation, Geological profiles, In situ and laboratory testing, Stress measurements, Determination of design parameters and preparation of Geotechnical Interpretative Reports (GIR) and Geotechnical Baseline Reports (GBR), Sustainability: reuse of materials, spoil and space.	6	15
Π	Design of Tunnels – Empirical design Terzhagis Rock Load method, Application of Bieniawsky's System, Application of Barton's System. Observational Design Methods; Analytical Design Methods; Numerical Design Methods. FIRST INTERNAL EXAM	8	15
III	Construction & Excavation methods Types and purpose of tunnels; factors affecting choice of excavation technique; Methods - soft ground tunnelling, hard rock tunnelling, shallow tunnelling, deep tunnelling; Shallow tunnels – cut and cover, cover and cut, pipe jacking, jacked box excavation techniques, methods of muck disposal, supporting, problems encountered and remedial measures.	6	15
IV	Lighting, Ventilation of tunnels, tunnel utilities, drainage and pumping.	6	15
	SECOND INTERNAL EXAM		
V	Tunnel support design Rock reinforcement - Rock dowels, rock bolts, rock anchors, mechanisms of support, physical aspects, , typical dimensions of rock bolt, face plates, bond characteristics, role played by time in rock reinforcement, installation technology, installation process. Concrete and shotcrete linings - Concrete Segmental Supports, Role of steel reinforcement of concrete	8	20

		[
	segments, Design and application aspects of precast		
	concrete segmental linings, Yielding properties of		
	segmental concrete linings, Cast In Situ or Monolithic		
	Concrete Linings, Waterproofing of Concrete Linings,		
	Shotcrete technology: operational and range of application		
	aspects, Shotcrete, General applications of shotcrete.		
	New Austrian Tunnelling Method - Historical aspects of		
	NATM, General Concepts of NATM, Principal historical		
	developments of NATM, NATM: Soft Ground		
	Tunnelling Applications, Achieving improved ground		
	support control, Influence of stand-up time, Advantages		
	of NATM for soft ground tunneling		
	Health, Safety and Environmental Considerations -		
	Health and Safety Considerations at Concept Planning		
	Stage for different tunnel types / uses, Reducing /		
	eliminating Hazards to Health, Safety and the		
	Environment by good planning and design,		
	Identification of hazards, strategies to mitigate these		
	hazards by good design practice, Occupational health		
	risk during construction and its mitigation, Hazard types		
VI	and safety measures (e.g. Fire, Ventilation, Transport,	8	20
	Machines, etc.), Risk assessment processes for design,		
	construction, operation and decommissioning, Modern		
	approach to the improvement of safety standards		
	(including Behavioural Based Safety). Environmental		
	management on a tunnelling site - noise, dust, vibration,		
	emissions, odours, traffic and other nuisances, waste		
	management, waste water management, ecology and		
	archaeology, Sustainability		
	END SEMESTER EXAM	l	1

COURSE CODE	COURSE NAME	L-T-P(C)	2017
08CE6220	PLANNING AND DESIGN OF FREIGHT	3-0-0	0 (3)
	TRANSPORTATION		
	Course Objectives		
To give the Student:-			
1. Concept of freight tran	nsportation demand estimation		
2. Knowledge in contem	porary planning issues related to freight transportation	n	
3. Exposure to ITS and i	ts application in freight transport		
	Syllabus		
Characteristics of goods, pr	roblems in freight transportation, Freight Demand Est	imation, Freight	Transpor
Planning Issues, Distributi	ion Management, Intermodal Freight Transport, ITS	S Applications	in Freigh
Fransport.			
	Course Outcome		
1. Ability to estimate the	e freight transportation demand		
2. Ability to plan freight	transportation system		
	References		
1. David Lowe, Intermoda	al Freight Transport, Elsevier Butterworth-Heinemann	Publishers, 200	5
2. Konstadinos G. Goulia	as, Editor, Transportation Systems Planning: Method	ds and Application	ions. CRC
Press, 2003			
3. Myer Kutz, Editor, Han	ndbook of Transportation Engineering, McGraw-Hill F	Publishers, 2004	
4. NCFRP Report 23,	Synthesis of Freight Research in Urban Transp	ortation Planni	ng, TRB
Washington, 2013. http://d			

5. Blanchard S.Benjamen, "Logistics Engineering and Management", Pearson; 6 edition, 2003.

6. Coyle J.J. Bardi JE, "The Management of Business Logistics", West Publishing Company, New York, 1984

7. Daganzo F.C and Newell FG, Physical Distribution from a Warehouse; Vehicle Coverage and Inventory Levels, Vol.19B, No.5, pp.397-407, Transportation Research, 1985.

8. Edwin Bacht J.A., "Geography of Transportation and Business Logistics", Wm C Brown Company Publishers, Dubuque, IOWA, 1970.

9. Herron P. David, "Managing Physical Distribution for Profit", Harvard Business Review, 1979

10. Khanna K.K., "Physical Distribution Management", Logistical Approach, Himalaya Publishing House, Bombay, 2007.

11. Planning Commission, Government of India, Total Transport System Study – Report on Commodity Flows, Railways, Highways and Coastal Shipping, (Interim) by RITES, New Delhi, 1987

12. Shapiro D. Roy and Heskett L. James, "Logistics Strategy-Cases and Concepts", Wesg Publishing Company, New York, 1985.

COURSE CODE	COURSE NAME	L-7	Г-Р (С)
08CE6220	PLANNING AND DESIGN OF FREIGHT TRANSPORTATION	3-(0-0 (3)
Modules	Content	Contact Hours	Semester Exam Marks (%)
Ι	Introduction: Goods Characteristics, operators, problems in freight transportation, regional vs. urban goods travel, intermodal freight travel issues	6	15
Π	Freight Demand Estimation: Operations, Planning - purpose, process, Data, Freight Agents, costs, Planning Models and Methods-freight demand estimation and forecasting at regional and urban level, IO model, Performance, Case studies	8	15
	FIRST INTERNAL EXAM		·
III	Freight Transport Planning Issues: Freight supply – capacity issues; freight productivity and performance; freight impacts – safety and environmental issues	8	15
IV	Distribution Management: Supply Chain – Warehousing – Facility Location, Inventory – Mode Choice – Distribution System, Vehicle Routing and Scheduling	6	15
	SECOND INTERNAL EXAM		
V	Intermodal Freight Transport: Rail freight operations,Intermodal Networks and Freight Interchanges,Intermodal Road and Rail Vehicles and Maritime Vessels	8	20
VI	ITS Applications in Freight Transport: Introduction to ITS, Role of ITS, ITS components applicable to Goods travel, case studies	6	20
	END SEMESTER EXAM		

	COURSE CODE	COURSE NAME]	L-T-P (C)	2017
	08CE6222	ADVANCED SOIL MECHANICS		3-0-0	0 (3)
		Course Objectives			
То	give the student				
1.	An introduction to crit	cal thinking in the analysis and design of geotechn	ical s	ystems	
2.	A firm theoretical back	ground necessary in the design of geotechnical sys	tems		
3.	•	bry of stress path in the Geotechnical design			
4.	An idea of basic princi	ples of soil engineering			
		Syllabus			
	Soil composition and	structure - Permeability and Seepage - Compressit	oility :	and Consolic	lation
	- Behaviour of comp	bacted soil - Slope instability - Reinforced earth			
		Course Outcome			
1.		aracteristics and select suitable soil for pavement co			
2.		s field and laboratory testing methods required for a	liffere	ent subgrade	materials
3.	Evaluate the soil condi	tion and recommend suitable treatment.			
		References			
1.		oduction to the Mechanics of Soil and Foundations	. McC	Graw Hill, 19	93.
2.		Soil Mechanics. MacMillan Education, 1987.			
3.		entals of Soil Behaviour. 3rd Edition, Wiley, 2005.			
4.		aviour and Critical State Soil Mechanics. Cambridg	-	iversity Pres	s, 1988.
5.	0	ed Soil Mechanics, Fourth Edition, CRC Press, 201			
6.	-	ruce Menzies, Advanced Unsaturated Soil Mecha	nics a	and Enginee	ring, CRC
	Press, 2007.				
7.	•	technical Engineering: Principles and Practices	of	Soil Mech	anics and
	Foundation Engineerin				
8.		entals of Soil Behaviour. 3rd Edition, Wiley, 2005			
		R. V, "Soil Mechanics", John Wiley & Sons, 2008			
	•	les, Practice and Design of Highway Engineering.			
11.	Gopal Ranjan & A. S New Delhi, 2000.	. Rao, Basic and Applied Soil Mechanics, New Ag	ge Int	ernational P	ublishers -

Modules Content Hours M I Soil composition and structure: Soil formation: Types of soil, and their characteristics, particle size and shapes, their impact on engineering properties. Soil structure: Clay mineral of properties. Soil structure: Clay mineral identification. X-ray and Differential Thermal Analysis. 6 Permeability and Seepage: Concept of Effective stress - permeability – seepage force and effective stress during seepage. II 8 II Laplace equation of fluid flow for 1D, 2D and 3D seepage. Flow nets – anisotropic and non-homogenous medium - Confined and unconfined seepage 8 III Compressibility and Consolidation: Terzaghi 1 D consolidation theory– applications on different boundary conditions – Determination of coefficient of consolidation – normally and over consolidated soil- compressibe soil layers – methods for accelerating consolidation – radial consolidation – settlement of compressible soil layers – methods for accelerating consolidation settlement 8 Behaviour of compacted soil: surface compaction - Laboratory methods for determination of optimum moisture content and Maximum dry density – Field Field	C)
Modules Content Hours M I Soil composition and structure: Soil formation: Types of soil, and their characteristics, particle size and shapes, their impact on engineering properties. Soil structure: Clay mineral of properties. Soil structure: Clay mineral identification. X-ray and Differential Thermal Analysis. 6 II Permeability and Seepage: Concept of Effective stress - permeability – seepage force and effective stress during seepage. II 8 II Laplace equation of fluid flow for 1D, 2D and 3D seepage. Flow nets – anisotropic and non-homogenous medium - Confined and unconfined seepage 8 III Compressibility and Consolidation: Terzaghi 1 D consolidation theory– applications on different boundary conditions – Determination of coefficient of compressible soil layers – methods for accelerating consolidation –radial consolidation - settlement of compressible soil layers – methods for accelerating consolidation settlement 8 Behaviour of compacted soil: surface compaction - Laboratory methods for determination of optimum moisture content and Maximum dry density – Field 1	3)
I of soil, and their characteristics, particle size and shapes, their impact on engineering properties. Soil structure: Clay mineralogy, clay-water interaction - soil fabric. Clay mineral identification. X-ray and Differential Thermal Analysis. 6 II Permeability and Seepage: Concept of Effective stress - permeability - seepage force and effective stress during seepage. II 8 II Laplace equation of fluid flow for 1D, 2D and 3D seepage 8 Flow nets – anisotropic and non-homogenous medium - Confined and unconfined seepage 8 Flow nets – anisotropic and non-homogenous medium - Confined and unconfined seepage 8 III Compressibility and Consolidation: Terzaghi 1 D consolidation theory– applications on different boundary conditions – Determination of coefficient of consolidation – normally and over consolidated soil- compression consolidation - settlement of compressible soil layers – methods for accelerating consolidation settlement 8 Behaviour of compacted soil: surface compaction - Laboratory methods for determination of optimum moisture content and Maximum dry density – Field 9	emester Exam arks (%)
II permeability – seepage force and effective stress during seepage. 8 II Laplace equation of fluid flow for 1D, 2D and 3D seepage 8 Flow nets – anisotropic and non-homogenous medium - Confined and unconfined seepage 8 FIRST INTERNAL EXAM Compressibility and Consolidation: Terzaghi 1 D consolidation theory– applications on different boundary conditions – Determination of coefficient of consolidation – normally and over consolidated soil- compression consolidation - settlement of compressible soil layers – methods for accelerating consolidation settlement Behaviour of compacted soil: surface compaction - Laboratory methods for determination of optimum moisture content and Maximum dry density – Field	15
III Compressibility and Consolidation: Terzaghi 1 D consolidation theory– applications on different boundary conditions – Determination of coefficient of consolidation – normally and over consolidated soil- compression consolidation curve secondary consolidation –radial consolidation - settlement of compressible soil layers – methods for accelerating consolidation settlement 8 Behaviour of compacted soil: surface compaction – Laboratory methods for determination of optimum moisture content and Maximum dry density – Field	15
IIITerzaghi 1 D consolidation theory- applications on different boundary conditions - Determination of coefficient of consolidation - normally and over consolidated soil- compression consolidation curve secondary consolidation -radial consolidation - settlement of compressible soil layers - methods for accelerating consolidation settlement8Behaviour of compacted soil: Laboratory methods for determination of optimum moisture content and Maximum dry density - Field1000000000000000000000000000000000000	
Laboratory methods for determination of optimum moisture content and Maximum dry density – Field	15
IV compression methods – effect of compaction on structure 6 – swelling pressure, shrinkage, shear strength, pore water pressure - CBR – Lab and field methods to find CBR – 6 Dynamic compaction test. 0 0 0	15
SECOND INTERNAL EXAM	
Slope instability: Stability analysis of slope – Finite and infinite – critical slip surface – sudden draw down condition – effective stress and total stress analysis – stability charts and stability number – methods for enhancing stability of unstable slopes 6	20
VI Reinforced earth: principles – components – design 8	20

principles – stability checks – soil nailing	
END SEMESTER EXAM	

COURSE CODE	COURSE NAME	L-T-P I	2017
08CE6224	INTELLIGENT TRANSPORTATION	3-0-	-0 (3)
	SYSTEM		
	Course Objectives		
To give the Student:-			
1. To provide a broad of	exposure to ITS		
2. To understand the re	levance, technological applications and strategies	using ITS	
3. To understand the re	cent development and application process of ITS		
	Syllabus		
Intelligent Transportation	System:- needs, standards, system architecture and	nd components	of ITS.
Development of ITS world	lwide and Indian context and role of traffic managem	ent centres.	
Various advanced 60rav	veler information systems available and data	collection tech	hniques to
•• ••	n of ITS like Incident management and parking	e e	
payment systems, Access	control systems etc. ITS system design, sensor tec	chnologies and	positioning
systems to support ITS ap	pplications. Automated Highway Systems: Evolu	tion, trends,	Integration,
system configuration, 1	Implementation, communication technologies	and its in	npact on
•	n planning and ITS, Emergency management system	ns and possibili	ities of ITS
in India.			
	Course Outcome		
	for ITS and the subsets of ITS.		
* *	ts with practical case studies leading to ITS	rather than co	onventional
methods			
	References		
•	Perspectives on Intelligent Transportation Systems,		
•	ent Transportation Systems Standards, Artech Hou		
	ny S. Lee, Intelligent Transportation Syster	ns: Smart	and Green
Infrastructure Design,	A		
	nury and Adel Wadid Sadek Fundamentals of	Intelligent Tra	insportation
Systems planning, Au		~	
	Hernandez-Jayo, Enrique Onieva and Ignacio Julio	García Zuazola	, Intelligent
	chnologies and Applications, Wiley, 2015.		10
6. Petros A. Ioannou, Au	atomated Highway Systems, Springer Science & Bus	iness Media, 20	13

COURSE	COURSE NAME	L-	Т-Р І
CODE			
08CE6224	INTELLIGENT TRANSPORTATION	3-(0-0 (3)
	SYSTEM		Γ
Modules	Content	Contact Hours	Semester Exam Marks (%)
Ι	History of ITS , ITS – Need, Standards and policy, System architecture, ITS Developments - Worldwide and Indian scenario, Metropolitan and Rural ITS. ITS user services: Traffic Management centers- Types and functions, Travel and traffic management, Public transportation operations, Commercial vehicle operations	8	15
П	Advanced Traveller Information systems :- Pre trip and En route information, Data collection techniques, Route Guidance Systems, Infrastructure based systems and its applications, Variable message signs, Vehicle to Center and Vehicle to Road side communication.	6	15
	FIRST INTERNAL EXAM		
III	Application of ITS: Incident Management-, Parking management, Electronic payments, Electronic toll collection systems, Access controls: metering, Dynamic speed adaptation. Advanced traffic control systems, In-vehicle systems. Dynamic routing/scheduling.	8	15
IV	ITS Design: ITS system design- components and requirements, ITS for road network- System Design-Sensor technologies and data requirements for ITS. Positioning systems in ITS, GPS and Mobile phone locations and its potential on ITS applications. Telecommunication in ITS, Integration of GPS and GIS for ITS.	6	15
	SECOND INTERNAL EXAM		
V	AutomatedHighwaySystems:EvolutionofAHS and new trends, Smartcars,Vehicleinplatoons,IntegrationofAHS,Systemconfiguration,ImplementationofAHS,Communication technologiesforAHS,ControlsensorrequirementsinAHS,Effect ofEnvironment.Effect ofAHSon	8	20
VI	Transportation planning and ITS:- Relationships	6	20
¥ 1	ransportation planning and 115. Relationships	U	40

Collision warning systems. Possibilities of ITS in India	
and Future of ITS.	

COURSE CODE	COURSE NAME	L	- T-P (C)	2017	
08CE6226	PROJECT MANAGEMENT		3-0-0 (3)		
	Course Objectives				
	Course Objectives				
To give the Student:-					
	t formulation and capital investment				
0 01	ject costing and appraisal				
÷	various concepts of construction planning				
_	construction scheduling and techniques				
	y control and safety concepts				
6. The importance of org	anization and use of project information				
	Syllabus				
Project formulation – Project	ect costing and formulation - construction plann	ing – S	Scheduling p	procedures	
and techniques - quality c	ontrol and safety procedures during constructio	n – or	ganization a	and use of	
project information.					
	Course Outcome				
1. The students able to get	concepts of project formulation and capital invest	ment			
2.The students get the idea	regarding project costing and appraisal				
3. The students understand	the knowledge about various concepts of constru	uction]	planning		
4. The students able to get	t the knowledge about construction scheduling an	d tech	niques		
5. The students get the cor	cepts of quality control and safety concepts		_		
6. The students get the imp	portance of organization and use of project inform	nation			
	References				
1. Joseph Berechman, T	he Evaluation of Transportation Investment Proj	ects, R	outledge Ad	dvances in	
-	ness Studies, 1st Edition, 2014.		C		
2. Primary Corridor T	ransportation Project, Major Investment St	udy: E	nvironmenta	al Impact	
Statement, Volume 1,	United States. Federal Transit Administration, 20	03.		•	
3. David Banister and Joseph Berechman, Transport Investment and Economic Development, UCL					
press, London, 2000.			-		
4. Heroil Keenzer – Proj	ect Management – A system approach to planning	g, sche	duling and c	controlling	
-CBS publishers distri	buters 1997.	-	-	_	
5. K. Waker A. Terail	and Jose M Grevarn: Fundamentals of Co	onstruc	tion Manag	gement &	
Organization, Reston	Pub Co. 1985.		-		
	Practical Project Management – Pearson Education	on 2002	2		
-					
	Analysis for Highways, International Text Book			ion. 1969	
-	Engineering and Transport Planning, Khanna Pub	-	•	,	
-	, CRRI, Journal of the Indian Roads Congress, V			Jumber 1	
Indian Roads Congres	-	June	, 15540 1	, , , , , , , , , , , , , , , , , , , ,	
•	oject Appraisal, for Developing Countries, John V	Vilev &	& Sons 198	4	
12. J.,. Diekey, Road I R	Jeer repruser, for Developing Countries, John v	, ney e	~ 55115, 170	••	

14. IRC: SP: 19; 2001, Manual For Survey, Investigation & Preparation of Road Projects.

15. IRC:SP: 30, Manual on Economic Evaluation of Highway Projects in India.

COURSE CODE	COURSE NAME	L-T-P (C)			
08CE6226	PROJECT MANAGEMENT	3-0-0 (3)			
Modules	Content	Contact Hours	Semester Exam Marks (%)		
Ι	Project formulation: Project Concepts - Capital investments - Generation and Screening of Project Ideas Project identification —Preliminary Analysis, Market, Technical, Financial, Economic and Ecological — Pre Feasibility Report and its Clearance, Project Estimates and Techno Economic Feasibility Report.	6	15		
П	Project costing and appraisal : Project Cash Flows - Time Value of Money –NPV-BCR -IRR -ARR -Urgency - Pay Back Period -Assessment of Various Methods - Indian Practice of Investment Appraisal International Practice of Appraisal -Analysis of Risk -Different Methods -Selection of a Project and Risk Analysis in Practice	6	15		
FIRST INTERNAL EXAM					
III	Construction planning: BasicConceptsintheDevelopmentofConstruction-PlansChoiceofTechnologyandConstructionMethod-DefiningWorkTasks-DefiningPrecedenceRelationshipsamongActivities-EstimatingActivityDurations-EstimatingResourceRequirements for WorkActivities	6	15		
IV	Scheduling procedures and techniques: Construction Schedules -Critical Path Method -Scheduling Calculations -Float -Presenting Project Schedules -Use of Advanced Scheduling Techniques -Crashing and Time/Cost Trade-offs	8	15		
	SECOND INTERNAL EXAM		1		
V	Quality control and safety during construction : Quality and Safety Concerns in Construction -Organizing for Quality and Safety -Work and Material Specifications -Total Quality Control -Quality Control by Statistical Methods Safety.	8	20		
VI	Organization and use of project information:Types of Project Information -Accuracy and Use ofInformation -Computerized Organization and Use ofInformation -Organizing Information in Databases-Relational Model of data bases -Other ConceptualModelsof Databases -Centralized Database	8	20		

	Management Systems			
END SEMESTER EXAM				

COURSE CODE	COURSE NAME	L-T-P (C)	2017
08CE6228	ADVANCED TRAVEL DEMAND MODELING	3-0-0 (3)	
	Course Objectives		
To give the Student:-			
1. Awareness about varie	ous qualitative variables used in forecasting and the sca	ling techniques	
2. Proficiency in develop	bing travel demand models by appropriate modeling tec	hniques	
3. Ability to test the mod	lel aggregation and transferability		
	Syllabus		
•	es in travel demand forecasting - scaling techniques -	•	
•	preference methods - time use analysis - model	aggregation an	nd model
transferability - simplified	l transport demand models and advanced models.		
	Course Outcome		
Students will be able to			
1. Assess qualitative va			
2. Develop discrete cho			
•	nd models using Stated Preference data		
	hand using activity based analysis		
	on and transferability	_	
6. Develop Travel Dem	and Models for small cities using Quick response techn	niques	
	References		
	noice Analysis: Theory and Application to Travel Dema		
	d Michel Bierlaire, Discrete choice methods and their a	applications to s	hort term
	sportation Science Handbook, 1999.	1 11/1 0 0	1001
•	n. Optimisation in Location and Transport Analysis, Jo	ohn Wiley & Sc	ons, 1981
(Digitized: 31 March 2		16	
	nsport Modelling for a Complete Beginner, Ctthink, 20		
•	Progress in Activity Based Analysis, Elsevier Science, 2		
	Lecture Notes in Economics & Mathematical Syste of the International Symposium Held at the Universit	•	
1976.	s of the international symposium riete at the Universit	ie de monueal,	springer,
	n Travel Demand Modelling: From Individual Choice	s to general Fou	ulibrium
**	Inc., 1995 (Digitized 29 June 2011)	s to general Equ	
John Whey and Bolls,			

Orterzar, J., and Willumasen, L. G., Modelling Transport, Wiley Publishers, 2011.
 Time use Analysis, Special Issue, Transportation, 26, Kluwer Academic Publishers, 1999

COURSE CODE	COURSE NAME	L-T-P (C)			
08CE6228	ADVANCED TRAVEL DEMAND MODELING	3-0-0 (3)			
Modules	Content	Contact Hours	Semester Exam Marks (%)		
Ι	Qualitaive variables: Role of Soft variables in Travel Demand Forecasting; Attitudes; Psychometric scaling Techniques – One-dimensional Scaling – Multidimensional Scaling; Basic Rating Scales: Comparative Rating Scales, Non – Comparative Rating scale, Itemised rating scale, graphic rating scale; Specific Attitude scales; Successive Categories; Principal Components Factor Analysis; Attitudinal Models.	6	15		
П	Discrete choice analysis: Utility Concept; Mode choice;Logit Models; Dogit Model; Nested Logit Model; ProbitModel; Route Choice Modelling; Combined TravelDemand Modelling; Model Parameter Estimation –Maximum Likelihood and Maximum Entropy Estimates.FIRST INTERNAL EXAM	8	15		
	Stated preference methods: Stated preference vs.				
III	Revealed Preferences; Design Issues; Survey Methods, Conjoint Analysis; Functional Measurement; Trade off Analysis, Transfer Price Method. Time use analysis: Activity patterns; Activity scheduling; Activity Time Allocation studies; Activity Episode Analysis; Travel Duration Analysis	6	15		
IV	Model aggregation and Model Transferability: Aggregation bias and forecasting; Aggregation Methods; Temporal Stability and geographical stability of Models; Transfer Model Updating Procedures – Transferring with Aggregate and Disaggregate sample data; Transferability Measures	6	15		
	SECOND INTERNAL EXAM				
V	Simplified transport demand models: Sketch planning Methods; Incremental Demand Models; Model estimation from traffic Counts; IVF Models, Marginal and Corridor Models; Gaming Simulation, Quick Response Techniques	8	20		
VI	Introduction to advanced Modeling techniques: GO Models; Entropy Models; Equilibrium Assignment Techniques, Multipath Assignment – Dial's Algorithm,	8	20		

	Knowledge Based Expert System; Neuro – Fuzzy		
	Application; ANN Techniques; Genetic Algorithms;		
	Object Oriented Programming; Decision Support		
	Systems; Goal Programming		
END SEMESTER EXAM			

COURSE CODE	COURSE NAME	L-T-P (C)	2017	
08CE6230	PLANNING AND DESIGN OF NON	3-0-	3-0-0 (3)	
	MOTORISED TRANSPORTATION			
	Course Objectives			
To give the Student:-				
1. The concept of NMT and i	ts benefits			
2. Knowledge in planning an	d design of NMT facilities			
3. Ability to evaluate and pri-	oritize bicycle and pedestrian plans with safety con	nsiderations.		
	Syllabus			
Transport planning process				
•	n of NMT by conducting various analysis			
	rds for pedestrian and bicycle facilities			
Implementation, operation a	and maintenance			
Safety assessment				
	Course Outcome			
- •	creating walkable and bikeable environments.			
2. Design pedestrian and b	5			
-	reate, implement, and evaluate bicycle and pedestr	rian plans.		
4. Assess bicycle and pede	•			
5. Prepare comprehensive	plans for encouraging non-motorized transportation	on.		
	References	· · · · · ·	1	
	on-Motorised Transport Measures: Policy and Op	ptions, Asian De	velopme	
	lia-uttoolkit.adb.org/mod5/se2/002.html			
-	anne Vanderschuren, Gail Jennings, L. New			
-	Manual, Department of Environmental Affairs, se		4.	
	anning and Design, McGraw Hill Publication, 198'	/.		
•	Planning, Open Books, 1982.			
-	d Layout of Cycle Tracks and Pedestrian Facilities	5.		
6. IRC 11-1962.				
7. John Forester, Bicycle Press, 1994.	Transportation: A Handbook for Cycling Trans	sportation Engin	ieers, Ml	
8. Myer Kutz, Editor, Hand	book of Transportation Engineering, McGraw-Hil	l Publishers, 200	04.	
9. Rodney Tolley, Editor environments; CRC Pres	, Sustainable Transport: Planning for walkin s, 2003.	g and cycling	in urba	
10. Yedla, Sudhakar, Urba Analysis, Springer India,	n Transportation and the Environment Issues, 2015.	, Alternatives a	nd Polic	
11. Planning and Desi		RIPP (IIT	Delh	
-	ublications/other_pub/Planning%20and%20Design			
0Cycle%20Infrastructure				
	ca/pw/construction/pdf/pedestrian-bicycle-facility-	dosign guidanco	ndf	

Techniques; Prioritizing Imprive Preferred Options FIRST INTER Planning for Pedestrians: Types of pedestrians and Ch facilities and planning; Pedestrian for Pedestrian safety programs Planning for Bicyclists: Types of cyclists and Bikeways roadway planning; Bicycle Accommodating cyclists on Bicycle boulevards/bike paths; Facilities; Roadway maintenand Safety Programs: Safety education; Traffic law en Implementation Strategies an	ATION t t Current Non-motorized Non-motorized Travel; tions and Prioritize Transportation: nd Analysis; Crash Data, Condition Evaluation Condition Evaluation	3-0 Contact Hours 6	D-0 (3) Semester Exam Marks (%) 15			
ModulesContentITransport Planning Overview Planning Process; Measuring Travel; Predicting Potential Evaluating Existing Cond ImprovementsIIEvaluation of Non-motorized Surveys, Demand Estimation a Barrier Effect; Cycling Techniques; Pedestrian Techniques; Prioritizing Impr Preferred OptionsIIPlanning for Pedestrians: Types of pedestrians and Cl facilities and planning; Ped improvements; Pedestrian f Pedestrian safety programsIVPlanning for Bicyclists: Types of cyclists and Bikeways roadway planning; Bicycle Accommodating cyclists on Bicycle boulevards/bike paths; Facilities; Roadway maintenand Safety Programs: Safety education; Traffic law er Implementation Strategies an	t Current Non-motorized Non-motorized Travel; tions and Prioritize Transportation: nd Analysis; Crash Data, Condition Evaluation Condition Evaluation	Hours 6	Exam Marks (%) 15			
I Transport Planning Overview Planning Process; Measuring Travel; Predicting Potential Evaluating Existing Cond Improvements Evaluation of Non-motorized Surveys, Demand Estimation a Barrier Effect; Cycling Techniques; Pedestrian Techniques; Prioritizing Impre Preferred Options FIRST INTEL Planning for Pedestrians: Types of pedestrians and Cl facilities and planning; Pede improvements; Pedestrian for Pedestrian safety programs Planning for Bicyclists: Types of cyclists and Bikeways roadway planning; Bicycle Accommodating cyclists on Bicycle boulevards/bike paths; Facilities; Roadway maintenand SECOND INTE Safety Programs: Safety education; Traffic law en Implementation Strategies an	: Current Non-motorized Non-motorized Travel; tions and Prioritize Transportation: nd Analysis; Crash Data, Condition Evaluation Condition Evaluation	Hours 6	Exam Marks (%) 15			
I Planning Process; Measuring Travel; Predicting Potential Evaluating Existing Cond Improvements Evaluation of Non-motorized Surveys, Demand Estimation a Barrier Effect; Cycling Techniques; Pedestrian Techniques; Prioritizing Impre Preferred Options FIRST INTED Planning for Pedestrians: Types of pedestrians and Cl facilities and planning; Ped improvements; Pedestrian f Pedestrian safety programs Planning for Bicyclists: Types of cyclists and Bikeways roadway planning; Bicycle Accommodating cyclists on Bicycle boulevards/bike paths; Facilities; Roadway maintenand SECOND INTI Safety Programs: Safety education; Traffic law er Implementation Strategies an	Current Non-motorized Non-motorized Travel; tions and Prioritize Transportation: nd Analysis; Crash Data, Condition Evaluation Condition Evaluation					
IISurveys, Demand Estimation a Barrier Effect; Cycling Techniques; Pedestrian Techniques; Prioritizing Impr Preferred OptionsFIRST INTELVPlanning for Pedestrians: Types of pedestrians and Ch facilities and planning; Ped improvements; Pedestrian f Pedestrian safety programsIVPlanning for Bicyclists: Types of cyclists and Bikeways roadway planning; Bicycli Accommodating cyclists on Bicycle boulevards/bike paths; Facilities; Roadway maintenandSafety Programs: Safety education; Traffic law en Implementation Strategies an	nd Analysis; Crash Data, Condition Evaluation Condition Evaluation	6	15			
III Planning for Pedestrians: Types of pedestrians and Cl facilities and planning; Ped improvements; Pedestrian f Pedestrian safety programs Planning for Bicyclists: Types of cyclists and Bikeways roadway planning; Bicycle Accommodating cyclists on Bicycle boulevards/bike paths; Facilities; Roadway maintenance Safety Programs: Safety education; Traffic law en Implementation Strategies an			-			
III Types of pedestrians and Cl III facilities and planning; Pedeimprovements; Pedestrian of Pedestrian safety programs Planning for Bicyclists: Types of cyclists and Bikeways IV Planning for Bicyclists and Bikeways IV Accommodating cyclists on Bicycle boulevards/bike paths; Facilities; Roadway maintenance Safety Programs: Safety Programs: Safety education; Traffic law en Implementation Strategies an	FIRST INTERNAL EXAM					
IV IV IV Planning for Bicyclists: Types of cyclists and Bikeways roadway planning; Bicycle Accommodating cyclists on Bicycle boulevards/bike paths; Facilities; Roadway maintenance SECOND INTE Safety Programs: Safety education; Traffic law en Implementation Strategies an	lestrian standards and	6	15			
Safety Programs: Safety education; Traffic law en Implementation Strategies an	e network planning; rural roads; Design of Bicycle Parking/storage e for cyclists	6	15			
Safety education; Traffic law en Implementation Strategies an	CRNAL EXAM		_			
V Comprehensive plans; Road de maintenance requirements; Ma agreements; Land Use Conn exchange, Rural areas, utility co		10	20			
VI VI Operations and Maintenance and Pavement Markings; I Operations; Routine maintenance	sign, reconstruction and or projects and site plan ectivity, Urban Design		20			

COURSE CODE	COURSE NAME	L-T-P (C)	2017	
08CE6292	MINI PROJECT	0-0-4 (2)		

Course Objectives

To give the Student:-

1. Capability for identifying, understanding and analyzing a transportation problem and to provide appropriate solutions.

2. Ability to explain and present the problem and its solution individually.

Approach

The student shall present two seminars and submit a report. The first seminar shall highlight the topic, objectives, methodology, design and expected results. The second seminar is the presentation of the work / hardware implementation. Conference/Publication and MOOC courses will be considered among the criteria for the final evaluation.

Course Outcome

Upon successful completion of the mini project, the student should be able to

1. Identify and solve various problems associated with designing and implementing a system or application.

2. Test the designed system or application.

COURSE CODE	COURSE NAME	L-T-P (C)
08CE6294	TRANSPORTATION ENGINEERING LAB	0-0-2 (1)
	Course Objectives	
To give the Student:-		
1. Awareness about the p	practical problems on traffic engineering and road safety	
2. An introduction to var	ious analysis and planning softwares	
3. Ability to conduct varie	ous traffic studies for design and management of road faciliti	es.
	Syllabus	
-	ount, Speed study, Parking study, Intersection turning mover	
	rvey, Traffic noise measurement, Vehicle emission testing	, Road lighting, Driver
reaction time. Road side and	d house hold interviews.	
	Course Outcome	
1. Knowledge on analysi	ng and solving traffic engineering problems	
2. Ability to work with tr	ansportation planning softwares	
	References	
1. C. Jotin	Khistyhttp://www.amazon.com/Transportation-Enginee	ring-Introduction-3rd-
Edition/dp/013033560	6/ref=sr_1_1?s=books&ie=UTF8&qid=1339240659&sr=	1-1 and, B. Kent Lall,
Transportation Engine	ering: An Introduction, Prentice Hall; 3rd Edition, 2002.	
2. Currin, Introduction to	Traffic Engineering: Manual F/data Collect & Analysis	, CL Engineering, 2nd
Edition, 2012.		
3. L.R. Kadiyali, Traffic	Engineering and Transportation Planning, Khanna Publish	hers, 2011.
4. Pignataro LJ. Traffic E	Engineering: Theory and Practice; Prentice hall, Inc, 1973	
5. Roger P. Roesshttp://w	www.amazon.com/Traffic-Engineering-4th-Roger-	
Roess/dp/0136135730	/ref=sr_1_1?s=books&ie=UTF8&qid=1338960921&sr=1	-1,
6. Elena S. Prassas and W	Villiam R. McShane, Traffic Engineering, Prentice Hall, 4	th Edition, 2010.

List of Experiments

A. Traffic Engineering Studies (Field Studies):

- 1. Volume Studies Straight Roads and at Intersections 2. Origin and Destination Survey.
- 2. Parking Surveys and Parking Turnover Studies
- 3. Speed Studies Spot Speed Studies by Stop Watch, Enosocpe and Radar Speed Meter
- 4. Journey Time and Delay Studies Floating Car Method
- 5. Headway and Gap-acceptance studies.
- 6. Delay Measurement at Signalised and Unsignalised Intersections
- 7. Road Safety Audit.
- 8. Traffic noise measurement.

B. Study of Driver Characteristics:

- 1. Reaction Time
- 2. Visual Acuity
- **3.** Glare Recovery.

C. Software lab:

- 1. GIS Software
- 2. TransCAD
- 3. EMME
- 4. HDM-4
- 5. Detailed drawings using CAD software
- 6. VISSIM

SEMESTER III

COURSE CODE	COURSE NAME	I	L-T-P (C)	2017
08CE7201	HIGHWAY GEOMETRIC DESIGN		3-0-	-0 (3)
	Course Objectives			
To give the Student:-				
1. Concept of various high	way system elements and their characteristics			
· · ·	ric design of highway alignments and intersections			
3. Idea of evaluation measured	ures of highway design consistency			
4. Knowledge in designing	groad side infrastructure such as parking and bus bay	s.		
	Syllabus			
Highway System – Classi	fication, components, characteristics			
Horizontal alignment of r	oads			
Vertical alignment of road	ds			
Consistency evaluation of	f highway geometry			
Design of intersections				
Design of road side infras	structure			
	Course Outcome			
1. Ability to understand t	he highway system and design highway geometry			
2. Ability to evaluate the	geometric design in relation to safety			
3. Ability to design requi	red type of road intersections road side facilities.			
	References			
1. L.R.Kadiyali and N.B.L	al, Principles and Practice of Highway Engineering,	Kha	nna, 2007.	
2. L.R.Kadiyali, Traffic Er	ngineering and Transportation Planning, , Khanna Pu	blica	ations, 2007	
	anna, Highway Engineering, Nem Chand and Brothe	ers, 2	2015.	
4. IRC Codes for Signs, M	arkings and Mixed Traffic Control in Urban Areas.			
-	Fred Wegman, Transport Infrastructure and Systems		-	
International Congress	on Transport Infrastructure and Systems (Rome, Italy	y, 1(0-12 April 2	2017), CRC
Press, 2017.				
6. United States Governme Scholar's Choice Editio	ent Accountability, Transportation Infrastructure: Hi n, 2015.	ghw	ay Paveme	nt Design -
7. Lester A. Hoel, Nichol	las J. Garber, Adel W. Sadek, Transportation Infr	astrı	ucture Engi	ineering: A
	, SI Version, Cengage Learning, 2010.		C	c

COURSE CODE	COURSE NAME	L-7	C-P (C)
08CE7201	HIGHWAY GEOMETRIC DESIGN	3-()-0 (3)
Modules	Content	Contact Hours	Semester Exam Marks (%)
Ι	Highway System: Functional Classification of Highway System; Design Controls – Topography, Driver characteristics, Vehicle Characteristics, Traffic, Capacity and Level of Service, Design Speed. Objectives of Geometric Design, Cross Section Elements: Design specifications; Pavement Surface characteristics – Skid Resistance, Road Roughness; Camber, Objectives, design standards.	6	15
Π	Horizontal Alignment of Roads: Sight Distances – Stopping Sight Distance, Overtaking Sight Distance and Intermediate Sight Distance ; Objectives of horizontal curves; Superelevation; Extra- widening on Curves; Transition Curves – Objectives and Design. Transition Curve setting methods, Introduction to MX Roads software.	6	15
	FIRST INTERNAL EXAM		
Ш	Vertical Alignment of Roads : Gradients – Types of Gradients, Design Standards; Vertical Curves – Summit Curves, Valley Curves and Design criteria for Vertical Curves; Importance of Sight Distances for Horizontal and Vertical Curves ; Combination of Vertical and Horizontal Curves – Grade Compensation	6	15
IV	Geometric Design Consistency: Concept of consistency, Evaluation Measures, Existing criteria for evaluation of consistency. Correlation between highway safety and consistency.	6	15
	SECOND INTERNAL EXAM		
V	Geometric Design of Intersections : Types of Intersections; Design Principles for Intersections; Design of At-grade Intersections – Channelization, Objectives; Traffic Islands and Design standards; Rotary Intersection – Concept, Advantages and Disadvantages; Grade separated Interchanges – Types, warrants and Design standards.	10	20
VI	Miscellaneous Elements : Requirements of Pedestrians; Pedestrian facilities on Urban Roads; Cycle Tracks – Guidelines and Design standards; Bus bays –Types and	8	20

Guide lines; Design of On-street and Off street Parking	
facilities – Guidelines for lay out Design, Traffic Signs and Markings.	
END SEMESTER EXAM	

COURSE CODE	COURSE NAME	L-T-P (C)	2017
08CE7203	PAVEMENT EVALUATION AND	3-0-	0 (3)
	MANAGEMENT		
	Course Objectives		
To give the Student:-			
1. The ability to measure	the performance of pavements		
2. The ability to evaluate	the adequacy and life of pavements		
3. The capability of main	taining and managing the pavements		
	Syllabus		
Structural and functional re-	equirements of pavements - serviceability - paver	ment distresses –	pavement
condition survey – pavemen	nt roughness - design of overlay - destructive testir	ng – performance	prediction
models – pavement manag	gement system - priority programming - life cycle	e cost analysis –	economic
evaluation and optimization	tools.		
	Course Outcome		
1. Students will be able to	o evaluate structural and functional performance of	pavements	
2. Students will be able to	o conduct pavement condition survey		
3. Students will be enable	ed to manage and prioritise various road construction	n processes.	
4. Students will be able to	o use various optimization tools for economizing res	sources.	
	References		
1. Shahin, M.Y, Pavement	Management for Airports, Roads and Parking lots,	Chapman & Hall	, 2005.
2. Haas. R, Hudson.W. Za	aniewsk John, Modern Pavement Management, Kr	eiger Publishing	Company,
1994.			
	ent Analysis and Design, Prentice Hall, 2004.		
4. Latest revisions of IRC	codes: IRC: 81 and IRC: 82		
5. Prithvi S. Kandhal, Mat 1348, ASTM International	ry Stroup-Gardiner, Flexible Pavement Rehabilitat , 1998.	ion and Maintena	ance, Issue

COURSE CODE	COURSE NAME	L-1	C-P (C)
08CE7203	PAVEMENT EVALUATION AND MANAGEMENT	3-()-0 (3)
Modules	Content	Contact Hours	Semester Exam Marks (%)
Ι	Structural and functional requirements of flexible and rigid pavements, Pavement performance, Serviceability concept, Factors affecting pavement surface condition, Pavement distresses, Causes, Methods of measurement, Maintenance treatments.	6	15
Π	Pavement Condition Survey -Pavement Condition Index(PCI) – Estimation of PCI by Shahin's Deduct value method- Pavement surface condition: Skid resistance	6	15
	FIRST INTERNAL EXAM		
III	Characterisation of roughness- Equipments for measuring roughness, profile indices, International Roughness Index (IRI), Factors affecting pavement structural condition, Structural evaluation by Non- Destructive Tests, Types – Benkelman Beam Deflection (BBD) measurement	6	15
IV	Falling Weight Deflectometer, Design of overlay using BBD data (IRC method), Destructive structural evaluation, Structural Capacity Index, Pavement performance prediction models: Mechanistic–Empirical, Regression, Stochastic, Static and Dynamic models	8	15
	SECOND INTERNAL EXAM		
V	Pavement Management System (PMS): Concept, Objectives, Components of PMS, PMS functions, General Structure, Types of pavement Maintenance actions: Preventive and Corrective maintenance, Maintenance policy, Pavement management levels: Network, Programme and Project level, Priority programming of maintenance and rehabilitation actions	8	20
VI	Life Cycle Cost Analysis, Heuristic Approach: Decision Matrix and Decision Tree based on Economic Evaluation and Optimisation, Tools for Pavement Management: HDM-4, Road Economics Decision Model	8	20
	END SEMESTER EXAM		

COURSE CODE	COURSE NAME		L-T-P (C)	2017
08CE7205	SOFT COMPUTING TECHNIQ	UES	3-0-	0 (3)
	Course Objectives			
To acquaint the students	with soft computing methodologies such as	neural netw	vorks, fuzzy	logic,
genetic algorithms and hy	ybrid algorithms and enable the students to i	mplement re	eal time intel	ligent
and adaptive systems.				
	Syllabus			
Introduction to Fuzzy lo	ogic, Fuzzification, Defuzzification method	ls, Artificial	Neural Net	works
concepts, Fundamentals	of genetic algorithms and hybrid systems.			
	Course Outcome			
The students will be abl	Course Outcome	to implement	nt real time	
	le to apply soft computing methodologies t	to implemen	nt real time	
	le to apply soft computing methodologies ty ystems.	to implemen	nt real time	
intelligent and adaptive s	le to apply soft computing methodologies tystems. References	-		
 I. S. Rajasekharan, G. 	le to apply soft computing methodologies (ystems. References A. Vijayalakshmi Pai, Neural Network, Fu	zzy Logic a		
 I. S. Rajasekharan, G. 	le to apply soft computing methodologies tystems. References	zzy Logic a		
 I. S. Rajasekharan, G. Algorithms Synthesi 	le to apply soft computing methodologies (ystems. References A. Vijayalakshmi Pai, Neural Network, Fu	zzy Logic a	and Genetic	
 S. Rajasekharan, G. Algorithms Synthesi S. N. Sivanandam, S 	le to apply soft computing methodologies to ystems. References A. Vijayalakshmi Pai, Neural Network, Fu s and Applications, Prentice Hall India, 2003	zzy Logic a 3. 7iley India, 2	and Genetic 2007.	016.
 S. Rajasekharan, G. Algorithms Synthesi S. N. Sivanandam, S Timothy J Ross, Fuz 	le to apply soft computing methodologies to ystems. References A. Vijayalakshmi Pai, Neural Network, Fu s and Applications, Prentice Hall India, 2003 . N. Deepa, Principles of Soft Computing, W	zzy Logic a 3. 7iley India, 2 Edition, Mc	and Genetic 2007. Graw Hill, 2	
 S. Rajasekharan, G. Algorithms Synthesi S. N. Sivanandam, S Timothy J Ross, Fuz S. Haykins, Neural N 	le to apply soft computing methodologies to ystems. References A. Vijayalakshmi Pai, Neural Network, Fu s and Applications, Prentice Hall India, 2003 . N. Deepa, Principles of Soft Computing, W zy logic with Engineering Applications, 4 TH	zzy Logic a 3. 7iley India, 2 Edition, Mc dition, Prent	and Genetic 2007. Graw Hill, 2 ice Hall, 199	8.

COURSE CODE	COURSE NAME	L-]	Г-Р (C)
08CE7205	SOFT COMPUTING TECHNIQUES	3-1	1-0 (3)
Modules	Content	Contact Hours	Semester Exam Marks (%)
Ι	Introduction to Fuzzy logic: Fuzzy sets- Fuzzy set operations- Fuzzy relations-Cardinality of Fuzzy relations- Operations on Fuzzy relations-Properties of Fuzzy relations-Membership Functions-Features of Membership functions- Fuzzification-Methods of Membership value Assignments- Fuzzy Rule Base- Defuzzification- Deffuzzification methods- Fuzzy logic controller(Block Diagram)	8	15
Π	Artificial Neural Networks: Basic concepts-Neural network Architectures-Single layer feed forward network- Multilayer feed forward network.	7	15
	FIRST INTERNAL EXAM		1
III	RecurrentNetworks-CharacteristicsofNeuralNetworks-Learningmethods.Perceptron networks-BackPropagationnetworks-RadialbasefunctionHopfieldnetwork-KohonenSelf	7	15
IV	Fundamentals of genetic algorithms : Basic concepts- working principle – encoding – different methods – Fitness function – reproduction- different methods. Genetic modelling-inheritance- Crossover mutation- Convergence of genetic algorithm	6	15
	SECOND INTERNAL EXAM		
V	Hybrid systems : Neural network, fuzzy logic and genetic algorithm hybrids – Neuro fuzzy hybrids- neuro genetic hybrids-Fuzzy genetic hybrids	7	20
VI	Geneticalgorithmbasedbackpropagationnetwork-Fuzzybackpropagationnetworks-fuzzylogic controlled genetic algorithms.	7	20
	END SEMESTER EXAM		

	COURSE CODE	COURSE NAME	L-T-P (C)	2017
	08CE7207	WATERWAY INFRASTRUCTURE PLANNING	3-0-0	0 (3)
		AND DESIGN		
		Course Objectives	•	
То	give the student			
1.	Knowledge in planning	ng and design of various waterway infrastructure facilitie	s like harbor a	and docks
2.	Ability to plan and de	sign coastal protection works		
3.	Knowledge about var	ious navigational aids		
4.	Awareness about pote	ential of inland navigations		
		Syllabus		
Ha	rbour Planning – varie	ous harbor works - docks and repair facilities - port f	acilities – dre	dging and
co	astal protection – inland	d navigation and its potential		
		Course Outcome		
Stı	idents will be able to			
1.	Plan and design harbo	our facilities		
2.	Estimate Traffic dema	and for harbour planning		
3.	Discriminate harbour	works, berthing structures and transit sheds		
4.	Understand repair fac	ilities, port facilities and cargo handling facilities require	d	
5.	Design coastal protec	tion facilities		
6.	Understand navigation	nal aids and inland navigation for safe operations.		
		References		
1.	Bindra, S.P. A Cours	e in Docks and Harbour Engineering, Dhanpat Rai & S	Sons, New De	elhi, India,
	2012.			
2.	Seetharaman, S. Dock	and Harbour Engineering, Umesh Publications, New D	elhi, India, 19	99.
3.	Srinivasan, R., Harbo 2009.	our, Dock and Tunnel Engineering, Charotar Publishin	g House, Ana	and, India,
4.	Bart Wiegmans, Rob 2016.	Konings, Inland Waterway Transport: Challenges and	1 Prospects, 1	Routledge,

COURSE CODE	COURSE NAME	L-]	Г-Р (С)
08CE7207	WATERWAY INFRASTRUCTURE PLANNING	3-0	0-0 (3)
	AND DESIGN		
Modules	Content	Contact Hours	Semester Exam Marks (%)
Ι	Harbour Planning: Types of water transportation, water transportation in India, requirements of ports and harbours, classification of harbours, selection of site and planning of harbours, location of harbour, traffic estimation, master plan, ship characteristics, harbour design, turning basin, harbour entrances, type of docks, its location and number, Site investigations – hydrographic survey, topographic survey, soil investigations, current observations, tidal observations.	6	15
Π	Harbour Works: Design and construction of breakwaters, berthing structures - jetties, fenders, piers, wharves, dolphins, trestle, moles, navigational aids, requirements of signals, fixed navigation structures, necessity of navigational aids, light houses, beacon lights, floating navigational aids, light ships, buoys, radar.	8	15
	FIRST INTERNAL EXAM		
III	Docks and Repair Facilities: Harbor docks, use of wet docks, design of wet docks, repair docks, lift docks, dry docks, keel and bilge blocking, construction of dry docks, gates for dry docks, pumping plant, floating docks, slipways, locks, size of lock, lock gates, types of gates.	6	15
IV	 Port facilities: Port development, port planning, port building facilities, transit sheds, warehouses, cargo handling facilities, container handling terminal facilities, shipping terminals, inland port facilities. 	6	15
	SECOND INTERNAL EXAM		
V	Dredging and Coastal Protection: Classification, types of dredgers, choice of dredger, uses of dredged materials, coastal erosion and protection, sea wall, revetment, bulkhead, coastal zone and beach profile.	8	20
VI	Inland Navigation and its potential: Inland waterways, Inland water transportation in India, classification of waterways, economics of inland waterways transportation, national waterways	8	20

END SEMESTER EXAM

 COURSE CODE
 COURSE NAME
 L-T-P (C)
 2017

 08CE7209
 LAND USE TRANSPORTATION PLANNING
 3-0-0 (3)

Course Objectives

To give the Student:-

1. Insight about the effect of land use in transportation planning

2. Knowledge about activity based modeling approach

3. Knowledge in modeling travel demand of people and goods

Syllabus

Land Use And Transportation Engineering, Land Use Transportation and Activity Models, General Travel Demand Models and Regional Transport Models, Regional Transport Models, Regional Network Planning, Advanced Spatial analysis Modelling

Course Outcome

1. Understand urban regional dynamics

2. Prepare integrated land use and transportation plans for a city

3. Estimate demand for both passenger and goods travel at regional level

4. Plan and evaluate regional transportation networks

References

1. Jhan De Dios Ortuzar. Luis E. Willumsen, Modelling Transport, 4TH EDITION, John Wiley& Sons. 2011.

2. R. Baxter, M. Echenique and J. Owers, Urban Development Models - The Institute of Transportation Engineering, University of California.

3. Robert S, Pindyek, Daniel L. Rubin Field, Econometric Models and Economic Forecast -; McGraw Hill, 1991.

4. S. R. Chari, Land Use Transportation Planning Notes, REC Warangal.

5. A. G. Wilson, Entropy in urban and regional modelling, Pion, London 1970.

6. Michael Batty, Urban Modeling. Algorithms, Calibrations, Predictions, Cambridge University Press, 2010.

7. Peter R. Stopher Arnim. H. Meyburg, Behavioral Travel Demand Models, Lexington Books, 1976.

8. Morlok E K, Introduction to Transportation Engineering and Planning, McGraw Hill, 1978.

9. Yan Liu, Modelling Urban Development with Geographical Information Systems and Cellular Automata, CRC Press, 2008.

COURSE CODE	COURSE NAME	L-7	C-P (C)
08CE7209	LAND USE TRANSPORTATION PLANNING	3-()-0 (3)
Modules	Content	Contact Hours	Semester Exam Marks (%)
Ι	LandUseAndTransportationEngineering:Transportationmodeling in Planning;Models and theirrole,CharacteristicsofTransport demand and supply,Equilibriumofsupplyand demand,Modeling anddecisionmaking,IssuesinTransportationmodeling andstructure of the classic transportmodel.	6	15
Π	Land Use Transportation and Activity Models: Introduction to Land Use Planning; Relation between Transportation and Land Use Planning; The economic base mechanism and allocation mechanism; Spatial allocation and employment interrelationship; Garin Lowry models.; Activity modeling	8	15
	FIRST INTERNAL EXAM		
III	General Travel Demand Models and Regional Transport Models: Aggregate, Disaggregate models ; Behavioral models; Recursive and direct demand Models; Linear, Non-Linear models; Logit, discriminant and probit models; Mode split models - Abstract mode and mode specific models.	8	15
IV	Regional Transport Models : Factors affecting goods and passenger traffic; Prediction of traffic; Growth factor models; Time function iteration models; internal volume forecasting models.	6	15
	SECOND INTERNAL EXAM		1
V	Regional Network Planning: Problems in Developing Countries, Network Characteristics - Circuitry, Connectivity, Mobility, Accessibility and Level of Service Concepts - Network Structures and Indices – Network Planning – Evaluation - Graph Theory – Cut sets – Flows & Traversing – Optimum Network - Inter- modal Co-ordination. – Rural Road Network Planning.; User equilibrium concepts	8	20
VI	Advanced Spatial analysis Modelling: Applications of Artificial Neural networks, Cellular automata, Fuzzy logic systems, Genetic algorithms, artificial intelligence concepts to transportation Modelling	6	20

END SEMESTER EXAM

COURSE CODE	COURSE NAME	Ι	L-T-P (C)	2017
08CE7211	SUSTAINABLE TRANSPORTATION		3-0-	0 (3)
	Course Objectives			
To give the Student:-				
1. Awareness about the in	mportance of sustainability in transportation planning	5		
2. Knowledge of various	aspects of sustainable transportation			
3. Ability to develop a tra	ansportation system which is sustainable			
4. Knowledge about prici	ing policies related to transportation.			
	Syllabus			
•	in Transport, Pricing Transportation, Planning for Su	stair	nability, Sus	tainable
Policies, Sustainable Tech	nology, Nationally Appropriate Mitigation Actions			
	Course Outcome			
•	inable transportation and differentiate sustainable tr	ansp	portation sys	stems fro
non-sustainable transpo	•			
• •	stainable transportation system.			
· ·	hods to improve sustainability in freight transportation	on.		
4. Ability to suggest polic	cies that improve the sustainability of transportation.			
	References			
	ble Transport: Definitions and Responses, In Trans	-		
	into the Transportation Planning Process, Con	itere	ence Procee	edings 3
Washington, D.C., Nationa		Ţ		
	e transport: Problems and Solutions. Gulford Press, N			
	Cities and Regions: A Framework for Sustainable		•	
•	for Future Urban Transport, Institute of Transportat	.10n	Studies, Ur	iversity (
California, Berkeley, 2005		orto	tion toohng	logios f
sustainability, 2013.	-Yue Wang and Gary L. Brosch (Eds.) Transp	ona		nogles lo
•	Eric C. Brunn and Jeffrey R. Kenworthy. An In	trod	luction to (Sustainab
	unning and Implementation, 2010.	uou		Sustamao
	or, Sustainable Transport: Planning for walking	σ 9	nd eveling	in urb
environments; CRC Press,		5 a.	na cycning	
	Transport: Planning for Walking and Cycling in U	Irha	n Environm	nents CR
Press, 2003	Transport. Training for warking and Cycling in C	510a		ionio, CR
1000, 2000				

COURSE	COURSE NAME	L-T-P (C)	
CODE			
08CE7211	SUSTAINABLE TRANSPORTATION	3-0-0 (3)	
Modules	Content	Contact Hours	Semester Exam Marks (%)
	Problem of Sustainability in Transport:		
Ι	Energy use in transport sector; Transport and climate change; Greenhouse gas emissions, urban air quality, Congestion and sustainability	6	15
Π	Pricing Transportation: Full cost of transportation, pricing and taxation	6	15
		L	
III	Planning for Sustainability:Urban form, Indicator based planning, landusetransportation integration	6	15
IV	Sustainable Policies: Continuum of Policies, speed and speed limit policies, national policies, sustainable travel demand management; public awareness	8	15
	SECOND INTERNAL EXAM		
V	Sustainable Technology: Telecommuting, Information and Communication technologies, E-commerce, Alternative Cleaner Fuels, vehicle technologies, fuel cells, Intelligent Transport Systems	8	20
VI	Nationally Appropriate Mitigation Actions:Mobility Management policies, Supporting Bicycling,Creating pedestrian friendly facilities, encouragingPublic Transportation	8	20
	END SEMESTER EXAM		

COURSE CODE	COURSE NAME]	L-T-P (C)	2017
08CE7213	TRANSPORTATION ECONOMICS		3-0-0 (3)	
	Course Objectives			
To give the Student:-				
1. The fundamental conc	cepts and need for economics in transportation.			
2. The ability to conduct	economic analysis for different projects in transporta	tion	field.	
3. Knowledge to apply the	he principles of economic theory in transportation pla	nnir	ng process.	
	Syllabus			
Fundamental concepts and	l overview of economic evaluation; Benefits due to	Tra	ansport Impr	ovements
Transport Costs, Account	ing prices of goods and services; Economic Anal	lysis	: The gener	ration and
screening of project ideas;	Application of economic theory in traffic assignment	prol	olem.	
	Course Outcome			
The student will able to con	nduct economic analysis of transportation infrastructu	re p	rojects.	
	References			
1. David A. Hensher, Ann	M. Brewer, "Transport: An Economics and Manage	mer	nt Perspective	e", Oxford
University Press, 2001.				
2. Emile Quinet, Roger	Vickerman, "Principles Of Transport Economics",	Edv	vard Elgar F	ublishing
2005.			-	-
3. Road User Cost Study,	Central Road Research Institute, 1983			

4. Ian G. Heggie, Transportation Engineering Economics, McGraw Hill, 1972.

5. IRC:SP:30-1993, Manual on Economic Evaluation of Highway Projects in India

6. Kadiyali L.R., "Principles & Practice of Highway Engineering", Khanna Publishers, 2005

7. Khanna S.K., Justo C.E.G., "Highway Engineering", Nem Chand & Bros., Roorkee, 2001

8. Woods, K.B., Berry, D.S. and Goetz, W.H., 'Highway Engineering', McGraw Hill Book Co.

9. Winfrey R, Highway Economic Analysis, International Textbook Company.

COURSE CODE	COURSE NAME	L-T-P (C)	
08CE7213	TRANSPORTATION ECONOMICS	3-0-0 (3)	
Modules	Content	Contact Hours	Semester Exam Marks (%)
Ι	Introduction- Significance of transport, Demand and supply of transport, Elasticity of demand and supply concepts and principles of highway engineering economy. Costs and Benefits Identification and measurements of transportation costs and benefits, Capital cost, Inflation cost Interest during construction, Maintenance cost, Road user costs, Fixed and operating costs.	8	15
Π	Benefits due to transport improvements : Direct benefits- Reduced vehicle operation cost, value of travel time savings, value of increased comfort and convenience, cost of accident reduction, reduction in maintenance cost. Negative impacts due to increased noise and air pollution, Indirect benefits: increased land value, increased development and demand.	6	15
	FIRST INTERNAL EXAM		L
III	Transportation costs : fixed and variable cost, cost of improvement, maintenance cost and other related cost, cost estimation methods, accounting for inflation, theory of transport supply and road planning.	8	15
IV	Accident cost, Methodology for monetary evaluation of passenger's travel time, Value of increased comfort and convenience, Congestion cost and pricing, Consumer's surplus and social surplus criteria, Fare policy for bus transit.	6	15
	SECOND INTERNAL EXAM		
V	Economic analysis – the generation and screening of project ideas. Different methods of economic analysis – capital budgeting. Case studies.	6	20
VI	Application of economic theory in traffic assignmentproblem – user optimal assignment and system optimalassignment. Economic analysis of projects – financing ofroad projects, methods of financing – PPP, toll collection.Economic variability of Build-Operate-Transfer schemes– Risk analysis.END SEMESTER EXAM	8	20

COURSE CODE	COURSE NAME	Ι	-T-P (C)	2017	
08CE7215	TRANSPORTATION SYSTEM MANAGE	GEMENT 3-0-0 (3)			
Course Objectives					
To give the Student:-					
1. An understanding of dif	ferent methods of data collection for transportation	on system	n managem	ent.	
2. Knowledge to analyse the	raffic problems and plan transportation system m	nanageme	ent actions.		
3. Fundamentals of manag	ement systems for parking and non-motorised tr	ansport			
	Syllabus				
Fundamental concepts of M	Methodology & Data Collection; Area wide data	collectio	n		
methodology, corridor data	a collection methodology; TSM Actions; Public	transport	ation & HO	V	
treatment; Priority at ram	p terminals; Demand management, Traffic Op	erations	Improvemen	nt; Parking	
Management					
	Course Outcome				
1. Understand TSM, the	e need for TSM and the objectives of TSM.				
	ed on a TSM goal or objective.				
	s to manage a transit system to improve its mana	-	-		
	led transportation demand management strateg	y for a	transportatio	on system	
based on a goal or ob					
	References				
e 1	rtation System Management in 1980: State of the	e Art and	Future Dire	ctions,	
Transportation Resear					
2. Manheim M, "Fundam 1985.	nentals of Transportation system approach", MIT	f press, C	Cambridge, N	ЛA,	
3. Institute of Transporta 1982	tion Engineers, Transportation and Traffic Engg	. Hand B	ook, Prentic	e Hall,	
4. John G Schoon, "Tran	sportation system and service policy", Chapman	and Hal	l, New York	. 1996.	
5. Meyer Michael D and Eric J Miller, "Urban Transportation Planning - A Decision Oriented					
 Approach", Mc Graw Hill, New York, 2001. 6. Michael D. Meyer, Transportation Planning Handbook: Institute of Transportation Engineers, John Willow & Song 2016 					
 Wiley & Sons, 2016. 7. Piyushimita (Vonu) Thakuriah and D. Glenn Geers, Transportation and Information Trends Technology and Policy, Springer New York, 2013. 					

COURSE CODE	COURSE NAME	L-T-P (C)	
08CE7215	TRANSPORTATION SYSTEM MANAGEMENT	3-0-0 (3)	
Modules	Content	Contact Hours	Semester Exam Marks (%)
I	 Methodology & Data Collection: Methodological frame work, objectives and problems, conflicts resolution, strategic categories and action elements. Impact of TSM: Travel behaviour impact and response time, TSM actions combinations and interactions, impact assessment and evaluation, monitoring and surveillance 	6	15
П	 Area wide data collection methodology, corridor data collection methodology. TSM Actions: Study of following TSM actions with respect to problems addressed, conditions for applications, potential implementation problems, evaluation & impact analysis 	8	15
	FIRST INTERNAL EXAM		
III	Public transportation & HOV treatment - Toll discounts for car pools during peak periods, park and ride, car pooling, exclusive lanes. Priority at ramp terminals, bus transfer stations, limited and skip-stop bus services, shared ride.	6	15
IV	Demand Management : Staggered work hours, flexible work hours, high peak period tolls, shuttle services, circulation services, extended routes	6	15
	SECOND INTERNAL EXAM		
V	Traffic Operations Improvement : On-street parking ban, freeway ramp control & closure, travel on shoulders, one-way streets, reversible lanes, Traffic calming, Right turn phase, right turn lanes, reroute turning traffic.	8	20
VI	Parking Management : Short term reserved parking, increased parking rates, time duration limits, expanded off-street parking, Non Motorized Transport- pedestrian only streets, Dial a ride for elderly & handicapped.	8	20
	END SEMESTER EXAM		

COURSE CODE	COURSE NAME	L	-Т-Р (С)	2017		
08CE7217	RAILWAY INFRASTRUCTURE PLANNING	G 3-0-0 (3)		0 (3)		
	AND DESIGN					
	Course Objectives					
To give the Student:-						
1. Understanding of rails	way track, its components and purpose.					
2. Understanding of plan	nning and design of ordinary and high speed rail way th	rack	xs.			
3. Awareness of rolling s	stock and measures to avoid rail accidents					
	Syllabus					
Alignment of railway trac	k, Permanent way, track maintenance and rehabilit	atic	on, Railway	accidents,		
Rolling stock, Railway stat	ions and yards, Signaling and interlocking, design of t	racl	ks for high s	peed.		
	Course Outcome					
1. Ability to align and de	esign a new track and associated facilities					
2. Ability to plan, desig	n and analyze the railway track system and signal s	syst	em with the	e available		
methods.						
3. Maintain the railway t	rack and apply remedial measures.					
	References					
1. Agarwal, M.M. Indian	Railway Track, 19th edition, Prabha & Co., New Delhi	, In	dia, 2017.			
2. Chandra S. and M.M. A	Agarwal Railway Engineering, Oxford University Press	s, N	ew Delhi, Ir	ndia, 2007.		
3. Gupta, B.L and B.L.Gup	3. Gupta, B.L and B.L.Gupta. Railway Engineering, Standard Publishers, New Delhi, India, 2005.					
4. Rangwala, S.C. Princip	les of Railway Engineering, Charotar Publishing Hous	se, A	Anand, India	, 2014.		
5. S.C. Saxena and S.P. A	rora, A text book of Railway engineering, Dhanpat Ra	ıi, 20	011.			
6. Satish Chandra and M.	Agrawal, Railway Engineering, Second Edition, Oxfo	rd U	Jniversity P	ress, 2013.		
7. J. S Mundrey, Railway	Track Engineering, Mc Graw Hill, 2009.					

COURSE CODE	COURSE NAME	L-T-P (C)	
08CE7217	RAILWAY INFRASTRUCTURE PLANNING AND	3-0-0 (3)	
	DESIGN		
Modules	Content	Contact Hours	Semester Exam Marks (%)
Ι	Alignment of Railway Lines: Modes of transportation, developments in railways, classification of railway lines, rail transportation in India, railway track gauges, choice of gauge, uni-gauge policy, ideal alignment, need for construction of new railway lines, traffic survey, reconnaissance survey, preliminary surveys, and engineering surveys, geometric design, gradients, grade compensation, speeds of trains, curves and superelevation, extra clearance on curves, widening of gauge on curves, cutting rails on curves.	6	15
Π	Permanent Way: Requirements, capacity, cross- sections, forces acting on the track, coning of wheels, tilting of rails, function of rails, types of rails, rail wear, defects in rails, creep of rails, rail fixtures and fastenings, ballast, functions, types, sizes, physical properties, subgrade and formation, slopes of formation, switches, tongue rails, crossing, angle of crossing, turnouts, inspection and maintenance, track junctions and track layouts, symmetrical split, three-throw switch, double turnout, diamond crossing, scissors crossover, gauntleted track, gathering line, triangle, double junctions.	6	15
-	FIRST INTERNAL EXAM		
III	Track maintenance and Rehabilitation: Maintenance tools, maintenance of rail surface, track drainage, maintenance in track circuited lengths, track tolerances, mechanized method of track maintenance, off-track tampers, shovel packing, directed track maintenance, classification of renewal works, through sleeper renewals, mechanized relaying, track renewal trains.	6	15
IV	 Railway accidents: Train accidents, derailments and its causes, restoration of traffic, safety measures, disaster management, classification of level crossings, accidents at level crossings, remedial measures, and maintenance of level crossings. Rolling Stock: Types of traction, locomotives and other 	8	15

	rolling stock, brake systems, resistance due to friction,		
	wave action, wind, gradient, curvature, starting, Tractive		
	effort of a locomotive, hauling power of a locomotive.		
	SECOND INTERNAL EXAM		
	Railway stations and yards: Purpose, site selection,		
	facilities, requirements, classification, platforms, building		
	areas, types of yards, catch sidings, ship sidings, foot		
V	over bridges, subways, cranes, weigh bridge, loading	8	20
·	gauge, end loading ramps, locomotive sheds, ash-pits,	U	20
	water columns, turntable, triangles, traverse, carriage		
	washing platforms, buffer stop, scotch block, derailing		
	switch, sand hump, fouling mark.		
	Signaling and interlocking: Objectives, classification,		
	fixed signals, stop signals, signaling systems, mechanical		
	signaling system, electrical signaling system, systems for		
	controlling train movement, interlocking, modern		
VI	signaling installations.	8	20
VI	Design of tracks for high speeds: Modernization of	U	20
	railways, effect of high speed track, vehicle performance		
	on track, high speed ground transportation system,		
	ballastless track, elevated railways, underground and tube		
	railways.		
	END SEMESTER EXAM		

COURSE CODE	COU	RSE NAME]	L-T-P (C)	2017		
08CE7219	LOW VO	OLUME ROADS		3-0-0 (3)			
	Course	Objectives					
To give the student							
1. The concept of rural roa	ad network planning						
2. Ability to do the geome	etric design of rural road	ls keeping the stan	dards.				
3. Ability to do the structu	ral design of rural road	pavements					
4. Knowledge regarding d	lifferent materials that c	an be used in the p	avement cons	truction			
	e e e e e e e e e e e e e e e e e e e	llabus					
Planning of low volume r	roads – geometric des	ign – materials a	nd use of wa	ste material	s for road		
construction - design of pay	vements – road construc	ction – quality cont	trol in constru	ction and ma	intenance.		
	Cours	e Outcome					
Students will be able to							
1. Plan the rural road netw							
2. Determine the sight dist		ure, super elevation	n, grades, visi	bility on vert	ical		
curves, cross section ele							
3. Justify the geometric de		for low volume ro	ads.				
4. Plan surveys, and prepa	•						
5. Design both flexible an	v .						
		erences					
1. Veeraragavan, S.K Kha			-		ers, 2014.		
2. Bruton, M. J., Introduct	•	e 1			~~~~		
3. Robert A. Douglas, Lo	w-Volume Road Engin	neering: Design, C	construction, a	nd Maintena	ance, CRC		
Press, 2017.			X7 1				
	uthority, Design M			Roads, Pa			
http://www.icafrica.org	/knowledge-publication	is/article/design-ma	anual-for-low-	-volume-road	is-parts-a-		
g-116/	Change Larry Valuesa	Doodo En sin serie s	Dest Manag	ana ant Dua ati			
	5. Gordon Keller & James Sherar, Low-Volume Roads Engineering: Best Management Practices – Field						
	Guide, USDA Forest Service/USAID, 2003. 6. IRC manual for rural roads. Special publication – 20(2002)						
 IRC manual for rural ro HMSO, Soil Mechanics 							
 8. IRC related code books 	-	LUIQUI					
 NRRDA – guidelines a: 							
J. TAKDA – guidelilles a							

COURSE CODE	COURSE NAME	L-T-P (C)	
08CE7219	LOW VOLUME ROADS	3-(0-0 (3)
Modules	Content	Contact Hours	Semester Exam Marks (%)
Ι	Planning of Low volume roads : Introduction to planning of low volume roads, concepts of network planning, selection of roadway alignment, factors affecting rout selection, engineering surveys for new road location.	6	15
П	Geometric design parameters : basic principles of geometric design, design of horizontal alignment, curves, super elevation, design of vertical alignment, summit curve, and valley curve standard of design of low volume road.	8	15
	FIRST INTERNAL EXAM		
III	 Materials: Road materials for pavement construction, soil-subgrade, road aggregate, binder, test on soil, test on aggregates and test on bitumen, bituminous mix design, marshal stability method for mix design. Waste material for pavement construction: introduction, fly ash for road construction, design & construction, design & construction, design & construction of fly ash embankment lime fly ash and stabilized soil, lime fly ash pavements, control of compaction, concrete stabilized fly ash with admixtures. 	6	15
IV	Design of pavement: Factors affecting pavement design function of pavement components- Empirical and mechanistic empirical design procedures - design of flexible pavement by CBR method, Burmister layer and IRC method (IRC37-2012). Design of rigid pavement by using IRC method.	6	15
	SECOND INTERNAL EXAM		
V	Road construction: Specifications of material and construction of sub grade, subbase, base and surface layer, construction of non bituminous road, construction of bituminous roads, equipment required for construction, maintenance of low volume roads.	8	20
VI	Quality Control in Construction and Maintenance: Introduction, Pre-requirements, organizational setup, specification and code of practice, Laboratory equipment, Earth and granular layers, bituminous courses, semi- rigid and rigid pavements, special requirements, recovered of quality control data. Distresses/Defects in rigid and flexible	8	20

pavements, Maintenance and evaluation, inventory roads
and inspections, types of Maintenance Activities,
Maintenance
END SEMESTER EXAM

COURSE CODE	COURSE NAME	L	-Т-Р (С)	2017		
08CE7291	SEMINAR – II		0-0-2	2 (2)		
Course Objectives						

To enable the students:

1. To Identify the current topics in the specific stream.

2. To Collect the recent publications related to the identified topics.

3. To Do a detailed study of a selected topic based on current journals, published papers and books.

4. To Present a seminar on the selected topic on which a detailed study has been done.

5. To Improve the writing and presentation skills

Approach

Students shall make a presentation for 20-25 minutes based on the detailed study of the topic and submit a report based on the study.

Course Outcome

Upon successful completion of this course, students will be able to

1. Get good exposure in the current topics in the specific stream.

2. Improve the writing and presentation skills.

3. Explore domains of interest so as to pursue the course project.

COURSE CODE	COURSE NAME	L	- T-P (C)	2017			
08CE7293	PROJECT (PHASE I)		0-0-12 (6)				
Course Objectives							
To enable the students:							
1. To do an original and in	dependent study on the area of specialization.						
2. To explore in depth a su	bject of his/her own choice.						
× •	background studies towards the project by conduct	ting	literature su	rvey in the			
relevant field.							
4. To broadly identify the	area of the project work, familiarize with the tools	requ	ired for the	design and			
analysis of the project.							
5. To plan the experimenta	l platform, if any, required for project work.						
	Approach						
The project work can be	design project/or perimental project and/or compute	n air	nulation pro	iant on any			
	a design project/experimental project and/or compute			•			
*	e stream of specialization. The project work is chose		•				
•	ent shall be supervised by one or more faculty members to be done in the Third semester and is continued it		*				

Phase I of the project is to be done in the Third semester and is continued in Fourth semester. Phase I includes identification of the topic, literature review, preliminary report and scope of the work which is to be completed in the 4th semester. Conference/Publication and MOOC courses will be considered among the criteria for the final evaluation.

Course Outcome

Upon successful completion of this course, students will be able to

1. Get good exposure in the current topics in the specific stream.

2. Improve the writing and presentation skills.

3. Explore domains of interest so as to pursue the course project.

COURSE CODE	COURSE NAME	Ι	<i>L</i>-T-P (C)	2017			
08CE7294	PROJECT (PHASE II)		0-0-21 (12)				
Course Objectives							
To continue and complete	the project work identified in project phase 1.						
	Approach						
There shall be two semin	nars (a mid term evaluation on the progress of the	WO	rk and pre s	submission			

There shall be two seminars (a mid term evaluation on the progress of the work and pre-submission seminar to assess the quality and quantum of the work). An original thesis has to be submitted on completion of the project work. At least one technical paper has to be prepared for possible publication in journals / conferences based on their project work. Conference/Publication and MOOC courses will be considered among the criteria for the final evaluation.

Course Outcome

Upon successful completion of the project phase II, the student should be able to

1. Get a good exposure to a domain of interest.

2. Get a good domain and experience to pursue future research activities.