F		T5906	ages: 3
Reg	No.:	Name:	Start Real Providence
	F	APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY	TERUTHURUTHY *
		Course Code: EC363	
May	Mon	Course Name: OPTIMIZATION TECHNIQUES	2.11
Max	. Mark	Duration Duration	on: 3 Hours
		PART A Answer any two full questions, each carries 15 marks.	Marks
1	a)	State the necessary and sufficient condition for existence of maximum	or (3)
		minimum for a multivariable objective function without constraints.	
	b)	Find the extreme points of the function	ion (5)
		$f(x_1, x_2, x_3) = x_1 + 2x_3 + x_2x_3 - x_1^2 - x_2^2 - x_3^2.$	
	c)	Maximize $f(x_1, x_2) = 3.6x_1 + 16x_2 - 0.4x_1^2 - 0.2x_2^2$ subject to the constraint	nts (7)
		$2x_1 + x_2 \le 10, x_1, x_2 \ge 0$ using Kuhn-Tucker conditions.	
2	a)	Solve the following LPP using simplex method. Maximize	(10)
		$Z = 10x_1 + 15x_2 + 20x_3$ subject to the constraints	
		$2x_1 + 4x_2 + 6x_3 \le 24, 3x_1 + 9x_2 + 6x_3 \le 30, x_1, x_2, x_3 \ge 0.$	
	b)	Solve the following LPP graphically. Maximize $Z = 100x_1 + 40x_2$ subject	t to (5)
		the constraints $5x_1 + 2x_2 \le 1000, 3x_1 + 2x_2 \le 900, x_1 + 2x_2 \le 500, x_1, x_2 \ge 0.$	
3	a)	Minimize $f(x_1, x_2, x_3) = \frac{1}{2}(x_1^2 + x_2^2 + x_3^2)$ by converting it into single	gle (7)
		variable function using the constraints $x_1 - x_2 = 0$ and $x_1 + x_2 + x_3 - 1 = 0$.	
	b)	Apply principle of duality to solve the following LPP. Maxim	ize (8)
		$Z = 40x_1 + 35x_2 \text{ subject to } 2x_1 + 3x_2 \le 60, 4x_1 + 3x_2 \le 96, x_1, x_2 \ge 0.$	
		PART B Answer any two full questions, each carries 15 marks.	

4 a) A transportation cost matrix is given below. Find the optimal solution using (8) MODI method.

	D ₁	D ₂	D ₃	D ₄	Supply
O ₁	21	16	25	13	11
O ₂	17	18	14	23	13
O ₃	32	27	18	41	19
Demand	6	10	12	15	· * * e

Page 1 of 3

T5906

b) Determine an initial basic feasible solution to the following transportation

Pages: 3

- problem using North-West corner rule. A В C D E Supply O_1 3 4 6 8 9 20 O_2 2 10 5 8 30 1 03 7 11 20 40 3 15 04 9 2 1 14 16 13 Demand 40 6 8 18 6
- 5 a) Consider the payoff matrix of Player A as shown in the table.Solve it by (8) graphical method to find optimal strategy for A, B and value of game.

Player B

 $B_1 \quad B_2 \quad B_3 \quad B_4 \quad B_5$ Player A $\begin{bmatrix} 3 & 0 & 6 & -1 & 7 \\ -1 & 5 & -2 & 2 & 1 \end{bmatrix}$

b) A truck must deliver concrete from the ready mix plant to a construction site. The (7) network in figure represents the available routes between the plant and the site.
Find the shortest distance from node 1 to node 6 by Dijkstra's method.

6 a) Find the initial basic feasible solution to the following unbalanced transportation (8)
Problem using VAM, and test the optimality using MODI method.

	D ₁	D ₂	D ₃	Supply
O ₂	15	3	21	30
O ₃	18	12	18	240
O ₄	9	6	15	45
Demand	225	60	150	

F

(7)

7

6

4

PART C Answer any two full questions, each carries 20 marks.

- 7 a) Minimize the function $f(x) = x^5 5x^3 20x + 5$ by Fibonacci search method in (10) the interval [0, 5], take n=6.
 - b) Minimize $f(x_1, x_2) = 2x_1^2 + x_2^2$ using steepest descent method with starting point (10) $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ in three iterations.
- 8 a) Illustrate with a diagram the process of recombination in order to obtain solution (10) of the highest quality.
 - b) Why do we use fitness function? Give generic requirements of the fitness (10) function.
- 9 a) Apply Hook-Jeeve's method to minimize the function (10)

$$f(x_1, x_2) = x_1^2 + 3x_2^2 + 6x_1x_2 - x_1 - x_2$$
 by taking $\Delta x_1 = \Delta x_2 = 0.5$ and starting

from the point $\begin{pmatrix} 2\\1 \end{pmatrix}$. Perform two iterations.

3

b) Explain the basic operations used in genetic algorithm. (10)

1