A1900

Reg No.:_

Name:

Pages:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSIT FIRST SEMESTER B.TECH DEGREE EXAMINATION, DECEMBE

Course Code: MA101

Course Name: CALCULUS

Max. Marks: 100 Duration: 3 Ho			3 Hours
		PART A Answer all questions, each carries 5 marks.	Marks
1	a)	Test the convergence of $\sum_{k=1}^{\infty} \frac{\cos k}{2}$	(2)
	b)	Discuss the convergence of $\sum_{k=1}^{\infty} \frac{(2k)!}{4^k}$	(3)
2	a)	Find the slope of the surface $z = \sin(y^2 - 4x)$ in the x – direction at the point (3,1).	(2)
	b)	Find the differential dz of the function $z = \tan^{-1}(x^2y)$.	(3)
3	a)	Find the direction in which the function $f(x,y) = xe^{y}$ decreases fastest at the point (2,0).	(2)
	b)	Find the tangent plane to the elliptic paraboloid $z = 2x^2 + y^2$ at (1,1,3)	(3)
4	a)	Evaluate $\iint_{R} y \sin xy dA$, where $R = [1,2] \times [0,\pi]$.	(2)
	b)	Evaluate $\int_{0}^{2} \int_{0}^{1} \frac{x}{(1+xy)^{2}} dy dx$	(3)
5	a)	if $\vec{A} = (3x^2 + 6y)i - 14yzj + 20xz^2k$, evaluate $\int \vec{A} \cdot d\vec{r}$ from (0,0,0) to(1,1,1)	(2)
		along the path, $x = t$, $y = t^2$, $z = t^3$	
	b)	Prove that $\overrightarrow{F} = (x^2 - yz)i + (y^2 - xz)j + (z^2 - xy)k$ is irrotational.	(3)
6	a)	Determine the source and sink of the vector field	(2)
		$F(x, y, z) = 2(x^{3} - 2x)i + 2(y^{3} - 2y)j + 2(z^{3} - 2z)k$	
	b)	Evaluate $\iint_{S} \overline{F} \cdot \overline{n} ds$ where S is the surface of the cylinder $x^{2} + y^{2} = 4$, $z = 0$,	(3)
•		$z = 3$ where $\overline{F} = (2x - y)\overline{i} + (2y - z)\overline{j} + z^2\overline{k}$	
		PART B Module 1 Answer any two questions, each carries 5 marks.	
7		Check the convergence of the series $\frac{3}{4} + \frac{3.4}{4.6} + \frac{3.4.5}{4.6.8} + \frac{3.4.5.6}{4.6.8.10} + \cdots$	(5)
8		Find the radius of convergence of the power series $\sum_{k=1}^{\infty} \frac{(-1)^k (x-4)^k}{3^k}$	(5)
9		Determine whether the alternating series $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{3^{2k-1}}{k^2+1}$ is absolutely	(5)

Α

k²+1

A1900

convergent.

Module 1I

Answer any two questions, each carries 5 marks.

10	If $u = x^2 tan^{-1}\left(\frac{y}{x}\right) - y^2 tan^{-1}\left(\frac{x}{y}\right)$, find	$\frac{\partial^2 u}{\partial x \partial y}$		(5)
11	Let $z = xve^{\frac{2}{y}}$, $x = r\cos\theta$, $v = r\sin\theta$ us	e chain rule to	$\frac{\partial z}{\partial z}$ and $\frac{\partial z}{\partial z}$	

at
$$r = 2$$
 and $\theta = \frac{\pi}{6}$ (5)

A rectangular box open at the top is to have volume $32m^3$. Find the dimensions of the box requiring least material for its construction.

Module III

Answer any two questions, each carries 5 marks.

13 Suppose that a particle moves along a circular helix in 3-space so that its position vector at time t is $\mathbf{r}(t) = 4\cos \pi t \mathbf{i} + 4\sin \pi t \mathbf{j} + t \mathbf{k}$. Find the distance travelled and the displacement of the particle during the time interval $1 \le t \le 5$. (5)

14 Suppose that the position vector of a particle moving in a plane

$$\bar{r} = 12\sqrt{t}\,i + t^{\frac{1}{2}}j, t > 0$$
. Find the minimum speed of the particle and locate (5) when it has minimum speed?

15 Find the parametric equation of the tangent line to the curve $x = \cos t, y = \sin t, z = t$ where $t = t_0$ and use this result to find the parametric (5) equation of the tangent line to the point where $t = \pi$.

Module 1V

Answer any two questions, each carries 5 marks.

16 Evaluate $\iint_{R} y \, dA$ where R is the region in the first quadrant enclosed (5) between the circle $x^{2} + y^{2} = 25$ and the line x + y = 5.

Evaluate
$$\int_{1}^{2} \int_{0}^{1} \frac{dy \, dx}{x^2 + y^2} \tag{5}$$

Evaluate $\iiint_V x \, dx \, dy \, dz$ where V is the volume of the tetrahedron bounded by the (5) plane x = 0, y = 0, z = 0 x + y + z = a.

Module V

Answer any three questions, each carries 5 marks.

19	Find the scalar potential of $F = (2xy + z^3)i + x^2j + 3xz^2k$	(5)
20	Find the work done by $F(x, y) = (x^2 + y^2)i - xj$ along the curve	
	$C: x^2 + y^2 = 1$ counter clockwise from (1,0) to (0,1).	(5)

Page 2 of 3

Pages: 3

(5)

12

18

Α	A1900	Pages: 3
21	Evaluate $\int_C \overline{F} \cdot d\overline{r}$ where $\overline{F} = y^2 i + xy j$ and $\overline{r}(t) = ti + 2tj$, $1 \le t \le 3$.	(5)
22	Evaluate $\int y dx + z dy + x dz$ along the path $x = \cos \pi t$, $y = \sin \pi t$, $z =$	t (5)
	from (1,0,0) to (-1,0,1)	(3)
23	If $\overline{r} = x \overline{i} + y \overline{j} + z \overline{k}$ and $= \overline{r} $, prove that $\nabla^2 f(r) = \frac{2}{r} f'(r) + f''(r)$.	(5)
	Module VI	
	Answer any three questions, each carries 5 marks.	
24	Using Stoke's theorem evaluate $\int_{C} \overline{F} \cdot d\overline{r}$; where $\overline{F} = xy\overline{i} + yz\overline{j} + xz\overline{k}$; C triangular path in the plane $x + y + z = 1$ with vertices at (1,0,0), (0,1,0) and	(5)
25	(0,0,1) in the first octant	
25	Using Green's theorem evaluate $\int_C (y^2 - 7y)dx + (2xy + 2x)dy$ where c is the circle $x^2 + y^2 = 1$	e (5)
26	Find the mass of the lamina that is the portion of the cone $z = \sqrt{x^2 + y^2}$ between $z = 1$ and $z = 3$ if the density is $\phi(x, y, z) = x^2 z$.	(5)
27	Use divergence theorem to find the outward flux of the vector field $F(x, y, z) = x^3i + y^3j + z^3k$ across the surface σ bounded by $x^2 + y^2 = 4$, $z = 0$ and $z = 4$.	oy (5)
28	If S is the surface of the sphere $x^2 + y^2 + z^2 = 1$, Evaluate	
	$\iint (xi+2yj+3zk).dS$	(5)