R7930

R7930

Name:
Pages: 3

Pages: 3

Pages: 3

Course Code: CE403

Course Code: CE403

Course Name: STRUCTURL ANALYSIS - III

Max. Marks: 100

Duration: 3 Hours

(2)

PART A

Answer any two full questions, each carries 15 marks. Marks

- 1 a) What are the assumptions in cantilever method of analysis?
 - b) Analyse the frame shown in figure 1 using cantilever method. Cross-sectional area of (13) members are shown in figure.

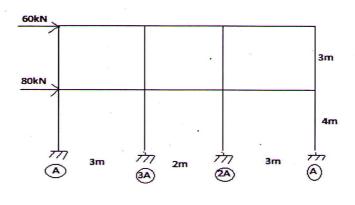


Fig 1

2	a)	Explain the formulae to find out the kinematic indeterminacy of pin-jointed and rigid-	(5)
		jointed frames.	
	b)	What is the relationship between stiffness and flexibility matrix	(5)
	c)	Compare nodal degrees of freedom and joint degrees of freedom.	(5)
3	a)	Define stiffness influence coefficients. Illustrate with suitable examples.	(5)
	b)	Explain the general procedure followed in displacement method of analysis	(7)
	c)	Define equilibrium and compatibility.	(3)
PART B Answer any two full questions, each carries 15 marks.			
4	a)	Discuss the formation of flexibility matrix for frame element	(10)
	b)	Discuss basic concepts of flexibility method	(5)

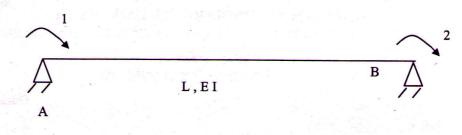
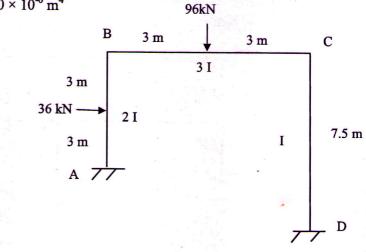
Reg No .:

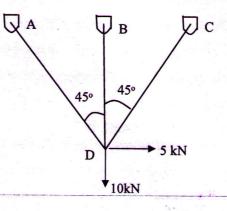
Page 1of 3

(5)

(10)

5 a) Derive the stiffness matrix for the structure with coordinates as shown in Fig.2.

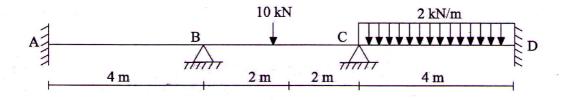

Fig. 2

b Analyse the rigid frame loaded as shown in Fig.3. using stiffness method $E = 200 \times 10^6 \text{ kN} / \text{m}^2$; $I = 500 \times 10^{-6} \text{ m}^4$ 96kN

- 6 a) Explain how the effect of calibration error or temperature changes is considered in the (5) analysis of trusses by matrix displacement method
 - b) Find the forces in the members of the truss loaded as shown in Fig.4. using stiffness (10) method. Take axial rigidity AE = unity for all members.

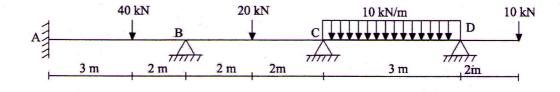
Page 2of 3

B


(15)

(5)

PART C


Answer any two full questions, each carries 20 marks.

- 7 a) Describe the stiffness matrix of elements in global coordinates from element coordinates (5)
 - b) Analyse the beam shown in figure 5 using direct stiffness method and draw the BMD

- 8 a) Explain the rotation of axes in 2 Dimensions
 - b) An overhanging beam is shown in figure 6. Analyse the structure using Direct Stiffness (15) Method and draw BMD

- 9 a) Explain logarithmic decrement. Derive the equation for logarithmic decrement. (5)
 - b) Derive the response of the free vibration system with damped case and calculate the free (15) vibration response of a SDOF system at time t=0.20 sec. for the following data

Natural frequency $\omega = 12$ rad/sec Damping coefficient $\xi = 0.15$ Initial velocity=10 cm/sec

Initial displacement=5 cm
