APJ ABDULKALAM TECHNOLOGICAL UNIVERSITY 08 PALAKKAD CLUSTER

Q. P. Code : CSP0818111-P

(Pages: 3)

Name: Reg. No:.....

FIRST SEMESTER M.TECH. DEGREE EXAMINATION DEC 2018

MATHEMATICS FOR COMMUNICATION ENGINEERING

Specialisation:ECE

08EC 6211/6511

(COMMON FOR ECE &CESP)

Time:3 hours

Max.marks: 60

1

Answer all six questions.

Modules 1 to 6:Part 'a' of each question is compulsory and answer either part 'b' or part 'c' of each question.

Q.no.	Module 1	Marks
1.a	Determine whether the vectors $(1,3,2,-2)$, $(4,1,-1,3)$, $(1,1,2,0)$ and $(0,0,0,1)$ are linearly independent or not .	3
	Answer b or c	
b	Consider the following two bases of \mathbb{R}^3 ;S={(1,1,1),(0,2,3),(0,2,-1)} and T={(1,1,0), (1,-1,0),(0,0,1)}.Find the coordinate vector of x=(3,5,-2) relative to S and T.	6
c	Using Gram Schmidt orthogonalization process find an orthonormal basis for the subspace spanned by the vectors $(1, 1, 1)$ $(-1, 0, -1)(-1, 2, 3)$ of R ³	6
Q.no.	Module 2	Marks
2.a	Show that the map T : $\mathbb{R}^2 \rightarrow \mathbb{R}^3$ defined by T (x_1, x_2) = (2 $x_{1-}x_2$, $x_1 + x_{2-}x_1 + 3x_2$) is a	3
	linear Transformation	
x.	Answer b or c	
b	Find the eigen values and eigen vectors of the matrix $\begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$	6
	Find the eigen values and eigen vectors of the matrix 1 3 1	
	1 2 2	, ×
c	Find a basis for the range of the linear transformation	6
	T:R ³ \rightarrow R ³ defined by T(x ₁ ,x ₂ ,x ₃) =(x ₁ +x ₂ +2x ₃ ,x ₁ +2x ₂ ,5x ₁ ,3x ₂ +4x ₃)	

4.a A student study habits are as follows. If he studies one night, he is 70% sure not to study next night. On the other hand, the prob. that he does not study 2 nights in succession is .6. In the long run , how often does he study?

Answer b or c

b A Markov chain on state space $\{1,2,3\}$ has initial distribution $p(X_0=i)=1/3$ and TPM = [.1 .5 .4

6

6

2

.6 .2 .2 .3 .4 .3]

Find

C

a) $P(X_2=3)$ b) $P(X_4=2/X_2=1)$ c) $P(X_1=1,X_2=2.X_3=3)$

If the TPM of a chain is $\begin{bmatrix} 0 & 1 \\ 1/2 & 1/2 \end{bmatrix}$

Find the steady state distribution of the chain.

Q.no.	Module 5	Marks
5.a	Two boys B_1 and B_2 and two girls G_1 and G_2 are throwing a ball from one to the other .each boys throws the ball to the other boy with probability $\frac{1}{2}$ and to each girl with probability $\frac{1}{4}$ on the other hand each girl throws the ball to each boy with probability $\frac{1}{2}$ and never to the other girl. Find the TPM.	4
	Answer b or c	
b	A man either drives a car or catches a train to go to office each day. He never goes 2 days in a raw by train but if he drives one day .then the next day he is just as likely to drive again as he is to travel by train . Now suppose that on the first day of the week the man tossed a fair die and drone to work if 6 appeared .Find	8
	(i) The probability that he takes a train on the 3 rd day.	
	(ii) The probability that he drives to work in the long run.	
C	If people arrive at a book stall in accordance with a Poisson Process with a mean rate of 3 per minute,find the probability that the interval betweentwo consecutive arrivals is 1)more than 1 minute 2)between 1 min and 2 min 3) 4 min or less.	8
Q.no.	Module 6	Marks
6.a	Show that the random process $x(t) = A\cos(w_0t+\theta)$ is not stationary if A and w_0 are constants and θ is uniformly distributed random variable in $(0,\pi)$	4
	Answer b or c	
b	For a random process $X(t)=y \sin wt$, y is a uniform random variable in the interval -1 to 1. Check whether the process is WSS or not	8
c	Given a random variable y with characteristic function $\phi(\omega) = E[e^{i\omega y}]$ and random process defined by $X(t) = \cos(\lambda t + y)$. Show that $X(t)$ is a stationary in wide sense of $\phi(1) = \phi(2) = 0$.	8