Reg No.:			Name:			
Ma	Cou	OURTH	PJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY SEMESTER B.TECH DEGREE EXAMINATION DECEMBER 2018 Course Code: CS202 e: COMPUTER ORGANIZATION AND ARCHITECTURE (CS. 17) Diration: 3	* Hours		
			PART A			
			Answer all questions. Each carries 3 marks.			
1		Write the	e three-address, two-address and one-address representations of the	3		
		operation	n below with relevant assumptions:			
		C ← [A]+[B]			
2		What is	the use of linkage register in subroutine invocation?	3		
3		Why is r	non-restoring division faster than restoring division?	3		
4		Design a	and draw a 3X2 array multiplier.	3		
			PART B			
			Answer any two questions. Each carries 9 marks.			
5		Illustrate	e various addressing modes with proper examples. Which is the default	9		
		addressi	ng mode selected by assemblers and compilers and why?			
6		Give the	flow chart for Booth's Algorithm. Illustrate using an example.	9		
7	(a)	(a) Assuming that stack grows towards lower address range write assembly code for				
		the follo	wing (Without using PUSH and POP):			
		(i)	Pushing elements stored at ITEM1, ITEM2 onto stack			
		(ii)	Popping an element onto address ITEM			
		(iii)	Copying value of top of stack to address TOP			
7	(b)	Compare	e and contrast single bus and multiple bus organisation of CPU.	4.5		
			PART C Answer all questions. Each carries 3 marks.			
8		Compare the two main modes of DMA transfer.				
9		Explain any two interrupt priority schemes.				
10		What is	MFC signal? How is it related to Memory Access Time?	_3		
11		Which d	lesign feature of SRAM cells helps in value retention without refresh?	3		

		r	١	١
		۲	۱	
	١	٠	è	ı

-			
r	А	\mathbf{R}	v

	FARID	
	Answer any two questions. Each carries 9 marks.	9
2	Illustrate with an example SCSI bus arbitration and selection.	9
13	With the help of a diagram examine the internal organisation of bit cells in a	7
	memory chin	1 5
14 (a)	Explain the architecture of USB with help of a diagram.	4.5
14 (b)	According to a manned cache with examples.	4.5
	PART E	
	Answer any four questions. Each carries 10 marks.	
1.5	Give a simple design for generating status bits for a 8-bit ALU.	10
15	Draw a labelled block diagram of a processor unit with seven registers R1 to R7,a	10
16	status register, ALU with 3-selection variables and C _{in} , and shifter with 3 selection	
	variables.	10
17	With the help of a flowchart for sign-magnitude addition/subtraction, explain the	10
	steps involved in developing a hardwired control unit.	
18	Using a block diagram analyse the design of a microprogram control for a	
10	processor unit.	
19	What is a control word? With the help of proper illustrations and assumptions	10
19	show how a designer would compose a control word for the processor unit.	
20	With the help of a diagram establish the functioning of microprogram sequencer	10
20	in a microprogram controlled processor.	