R5935

Reg No.:

APJ ABDUL KALAM TECHNOLOGICAL FIFTH SEMESTER B.TECH DEGREE EXAMINATI

Course Code: EC303

Name

Course Name: APPLIED ELECTROMAGNETIC

Max. Marks: 100

Duration: 3 Hours

ages: 2

Smith Chart to be supplied.

PART A

	Answer any two full questions, each carries 15 marks.	Marks
a)	Point charges 5 nC and -2 nC are located at $(2,0, 4)$ and $(-3,0, 5)$, respectively. (i) Determine the force on a 1nC point charge located at $(1, -3, 7)$. (ii) Find the electric field E at $(1, -3, 7)$.	(7)
b)	State and explain Maxwell's equations in the integral and differential forms.	(8)
a)	Give Poisson's and Laplace equation in electrostatics. Give application	(7)
b)	A plane wave propagating through a medium with $\varepsilon_r = 8 \ \mu_r = 2 \ has$ $0.5e^{-z/3}sin(10^8t - \beta z) \ a_x \ V/m$. Determine (i) β	(8)
	(ii) Intrinsic impedance	
	(iv) Wave velocity (v) H field	
a)	Derive the expression of capacitance of two wire transmission line.	(8)
b)	State and prove boundary conditions for E and H in accordance with Maxwell's	(7)

PART B

Answer any two full questions, each carries 15 marks.

4	a) b)	In free space, $H = 0.2 \cos (\omega t - \beta x) a_z A/m$. Find the total power passing through: (i) A square plate of side 10 cm on plane $x + z = 1$ (ii) A circular disc of radius 5 cm on plane $x = 1$. Derive an expression for characteristic impedance of a transmission line and show that it is resistive at radio frequencies.	(8)
5	a) b)	What is polarisation? Explain the different types of Polarisation? A telephone line has $R = 30\Omega/km$, L= 100mH/km, G=0,and C= 20μ F/KM. At f=1 KHz, obtain: i) Characteristic impedance ii) propagation constant iii) phase velocity.	(7) (8)
6	a)	Derive the expression for the ratio of reflected to incident electric field strength	(7.5)

ctric field strength (7.5)for an insulator with oblique incidence.

1

2

3

equations.

(7.5)

(10)

Derive the expression of input impedance due to a transmission line terminated b) by a load .Also find the expression for SWR.

PART C

Answer any two full questions, each carries 20 marks.

- Derive the expression for r-circles and x-circles in Smith chart. 7 a)
 - Determine ,assuming TE_{10} mode of propagation ,the cut-off frequency, cut-off (10)**b**) wavelength, guide wavelength ,phase constant, phase velocity, group velocity and wave impedance in the case of a hollow rectangular metallic waveguide of dimensions 6cm and 3 cm , respectively, when the applied signal frequency is 5GHz
- A 100 + j150 Ω load is connected to a 75 Ω lossless line. Using Smith Chart, (10)8 a) find:
 - (i) Γ

B

- (ii) s
- (iii) The load admittance Y_L
- (iv) Z_{in} at 0.4 λ from the load

Obtain the waveguide solution to Maxwell's wave equations (10)b)

- (10)Explain single stub matching using analytical method. 9 a)
 - A hollow rectangular waveguide has dimensions of a = 4 cm and b = 2 cm. (10)**b**) Calculate the amount of attenuation if the frequency is 3.5 GHz. Assume dominant mode.