Reg No.:

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVER

FIFTH SEMESTER B.TECH DEGREE EXAMINATION?

Course Code: CS361

Course Name: SOFT COMPUTING

Max. Marks: 100

Duration: 3 Hours

PART A

Answer all questions, each carries 3 marks

Marks

- Define artificial neural network, Draw its mathematical model? 1
- (3) (3)
- Obtain the output of the neuron for a network with inputs are given as 2 [x1,x2,x3]=[0.8,0.6,0.4] and the weights are [w1,w2,w3]=[0.1,0.3,-0.2]
 - with bias=0.35. Also find output for:
 - ii) Bipolar sigmoidal activation functions. i) Binary sigmoidal
- Define the Perceptron learning rule and state the importance of Delta rule in (3)3
- Adaline? (3)List the stage involved in Back Propagation Algorithm? 4

PART B

Answer any two full questions, each carries 9 marks

- (3) Discuss the concept of M P Neuron? 5 a)
 - (6)b) Implement AND function using MP neuron (take binary data)? (7)
- Design logical AND using Perceptron network for bipolar inputs and targets? 6
 - (2) Using linear separability, draw the decision boundary for logical AND?
- (9) Design and implement OR function with bipolar inputs and targets using 7 Adaline network? Find total mean square error of 3 epochs?

PART C

Answer all questions, each carries 3 marks

- (3) Define Fuzzy set and write basic fuzzy set operations?
- 8 (3) Discuss fuzzy equivalence relations and list out its properties?
- 9 (3) How Induction Reasoning is used for Fuzzification process? 10 (3)
- Using Zadeh's notation, determine the λ cut sets for the given fuzzy sets: 11

$$\underline{S1} = \{ \frac{0}{0} + \frac{0.5}{20} + \frac{0.65}{40} + \frac{0.85}{60} + \frac{1.0}{80} + \frac{1.0}{100} \}$$

$$\underline{S2} = \left\{ \frac{0}{0} + \frac{0.45}{20} + \frac{0.6}{40} + \frac{0.8}{60} + \frac{0.95}{80} + \frac{1.0}{100} \right\}$$

Express the following for $\lambda = 0.5$

i)
$$S_1 U \underline{S_2}$$
 ii) $\underline{S_1} \cap \underline{S_2}$ iii) $\underline{S_1}$

iii)
$$\overline{\underline{S}_1}$$
 iv) $\underline{\underline{S}_2}$

PART D

Answer any two full questions, each carries 9 marks

12 a) Let U be the universe of military aircraft of interest as defines as below,

(5)

Let A be the fuzzy set of fighter class aircraft:

$$\underline{\mathbf{A}} = \left\{ \frac{0.3}{a_{10}} + \frac{0.4}{b_{52}} + \frac{0.2}{c_{130}} + \frac{0.1}{f_2} + \frac{1}{f_9} \right\}$$

 $\underline{B} = \left\{ \frac{0.1}{a_{10}} + \frac{0.2}{b_{52}} + \frac{0.8}{c_{130}} + \frac{0.7}{f_2} + \frac{0}{f_9} \right\}, \text{ then find the following:}$

b) The discretized membership function of a transistor and a resistor are given (4) below,

$$\mu \underline{T} = \left\{ \frac{0}{0} + \frac{0.2}{1} + \frac{0.7}{2} + \frac{0.8}{3} + \frac{0.9}{4} + \frac{1}{5} \right\}$$

$$\mu \underline{R} = \left\{ \frac{0}{0} + \frac{0.1}{1} + \frac{0.3}{2} + \frac{0.2}{3} + \frac{0.4}{4} + \frac{0.5}{5} \right\}.$$
 Find the following

- i) Algebraic Sum
- ii) Algebraic Product
- iii) Bounded Sum
- iv) Bounded difference

13 a) Consider a universe of aircraft speed near the speed of sound as X={ 0.72, 0.725, 0.75, 0.775, 0.78} and a fuzzy set on this universe for the speed "near mach 0.75"= M

$$\underline{\mathbf{M}} = \left\{ \frac{0}{0.72} + \frac{0.8}{0.725} + \frac{1}{0.75} + \frac{0.8}{0.775} + \frac{0}{0.78} \right\}$$

Define a universe of altitudes $Y=\{21,22,23,24,25,26,27\}$ in K-feet and a fuzzy set on this universe for the altitude fuzzy set "approximately 24,000 feet" = Nwhere

$$\underline{\mathbf{N}} = \left\{ \frac{0}{21k} + \frac{0.2}{22k} + \frac{0.7}{23k} + \frac{1}{24k} + \frac{0.7}{25k} + \frac{0.2}{26k} + \frac{0}{27k} \right\}$$

- i) Construct a relation $\underline{R} = \underline{M} \times \underline{N}$
- ii) For another aircraft speed, say M1 in the region of mach 0.75 where

$$\underline{\mathbf{M}}_{1} = \left\{ \frac{0}{0.72} + \frac{0.8}{0.725} + \frac{1}{0.75} + \frac{0.6}{0.775} + \frac{0}{0.78} \right\}$$

Then find relation $\underline{S} = \underline{M}_1 \mathbf{o} \mathbf{R}$ using max-min composition.

b) Using your own intuition and definitions of the universe of discourse, plot fuzzy (3) membership functions for "weight of people".

(10)

- a) Using Inference approach, find the membership values for the triangle shapes (5) I,R,E,IR, and T for a triangle with angles of degrees 45,55,80.
 - b) Consider the discrete fuzzy set defined on the universe $X=\{a, b, c, d, e\}$ as (4) $\underline{A} = \left\{ \frac{1}{a} + \frac{0.9}{b} + \frac{0.6}{c} + \frac{0.3}{d} + \frac{0}{e} \right\}$, Using Zadeh's notation, find the λ - cut sets for $\lambda = 1, 0.9, 0.6, 0.3, 0^{+}$ and 0.

PART E

Answer any four full questions, each carries 10 marks

15	a)	Explain formation of fuzzy rule with an example?	(5)
	b)	Discuss the classification of Neuro Fuzzy Hybrid System?	(5)
16	a)	What is the concept of crossover in Genetic Algorithm?	(5)
	b)	Explain various coding techniques in GA with examples?	(5)
17		Explain Genetic Neuro - Hybrid systems, list out its advantages also?	(10)
18		Explain Fuzzy inference models with examples?	(10)
19	a)	Explain Various selection methods?	(5)
	b)	Illustrate the Mutation process in GA?	(5)
20		Explain Genetic Fuzzy Rule Based systems?	(10)

Explain Genetic Fuzzy Rule Based systems?