E

Reg No .:

Max. Marks: 100

Name:

Pages: 2

APJ ABDUL KALAM TECHNOLOGICAL UNIVE

FIFTH SEMESTER B.TECH DEGREE EXAMINATION APRIL 2013

E5839

Course Code: CE309

Course Name: WATER RESOURCES ENGINEERING (CE)

DADT

Duration: 3 Hours

PART A

Answer any two full questions, each carries 15 marks

Marks (5)

- 1 a) Explain the components in a hydrological cycle with a neat sketch.
- (5)

c) Differentiate mass curve and hyetograph.

- (5)
- 2 a) Explain the methods to find the average precipitation over a catchment area.

b) How can you obtain the optimum number of rain gauges in a catchment area?

- (6) (5)
- b) The isohyets for annual rainfall over a catchment were drawn and areas of strips between isohyets are obtained as below. Determine the average depth of annual rainfall over the area.

Isohyets(mm)	450-550	550-650	650-750	750-950	950-1150	1150-1250
Area (km²)	1200	3000	2800	1000	900	600

c) Define infiltration indices.

(4)

3 a) List and explain factors affecting runoff in a catchment area.

- (5)
- b) What is unit hydrograph? Stating the assumptions, explain the derivation of a unit hydrograph from a storm hydrograph.
 - (5)

(5)

c) Ordinates of 2 hourunit hydrograph are given below. Using this derive the ordinates of a 6 hour unit hydrograph using S hydrograph method.

	Time (hrs)	0	2	4	6	8	10	12	14	16	18	20	22
Ī	Ordinate of 2 hour unit	0	25	100	160	200	170	110	70	30	20	8	0
	hydrograph (cumec)												

PART B

Answer any two full questions, each carries 15 marks

4 a) Write the environmental effects of irrigation.

(4)

b) Differentiate between flow and lift irrigation systems.

(4)

(7)

c) Gross command of a reservoir is 50,000 hectares. The CCA is 80% of GCA. Find out the capacity of the reservoir which is able to irrigate areas as given below. Reservoir and canal losses may be taken as 5% each of water required by crops.

Crop	Base period (days)	Duty (hectares/cumec)	Intensity of irrigation as % of CCA		
Wheat	120	2000	25		
Rice	140	900	18.75		
Cotton	180	1600	12.50		

5 a) Define field capacity, permanent wilting point and available moisture.

(4)(6)

b) A loam soil has field capacity 27% and permanent wilting percentage 12%. The dry weight of the soil is 13.73 kN/m³. If the depth of the rootzone is 1 m, determine the storage capacity of the soil. Irrigation water is applied when the

E	Riv.	E5839 Pages	: 2						
		moisture content drops to 15%. If the water application efficiency is 75%,							
		determine the water depth require to be applied in the field.							
	c	Define duty and delta. Derive the relation between them.	(5)						
6	a)	What is river training? What are the objectives of river training? What are the	(8)						
ż	u	classifications?							
	b	Explain Guide banks and groynes with neat sketches.	(7)						
		PART C							
Answer any two full questions, each carries 20 marks									
7	a)	What are the storage zones in a reservoir?	(5)						
	b	Define trap efficiency. Explain the method to find useful life of a reservoir.	(10)						
	c	Differentiate mass curve and demand curve.	(5)						
8	a)	Define porosity, specific yieldand specific retention. Establish a relation between	(5)						
		them.							
	b	Explain and derive steady state flow to wells in a confined aquifer.	(10)						
	c	Explain Darcy's law.	(5)						
9	a	Explain recuperation method to find yield from an open well.	(5)						
	b	A well is to be constructed in a fine sandy subsoil formation. The discharge of the	(8)						
		well is anticipated to be 0.004 m ³ /sunder depression head of 4 m. Find the							
		diameter of the well. Given (K/A) for sandy soil = 0.5 m ³ /hr/m ² of area under							
		depression head of 1 m.							
	c	Explain with sketch strainer type tube well.	(7)						