C3807

Reg No .:

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY THIRD SEMESTER B.TECH DEGREE EXAMINATION APRIL 201

Course Code: EE203

Course Name: ANALOG ELECTRONIC CIRCUITS (EE)

Max. Marks: 100

PARTA

Answer all questions, each carries 5 marks

1	(a)	Design a suitable circuit to obtain the output level clipped at $+3V$ and $-4V$ for a	(3)
		10V peak to peak sinusoidal input voltage.	
	(b)	What are the factors affecting stability of operating point of a transistor?	(2)
2		Draw and explain high frequency hybrid pi model of common emitter transistor.	(5)
3		What are the different topologies of feedback amplifiers?	(5)
4	(a)	What are the properties of an ideal opamp?	(3)
	(b)	State Barkhausen criteria for sinusoidal oscillators.	(2)
5		With the help of a circuit diagram show how an opamp is used to get an output	(5)
		as $V_0 = V_1 + V_2 - V_3 - V_4$, Where V_1 , V_2 , V_3 and V_4 are inputs to opamp.	
6		Design an integrator that can integrate a square wave of peak to peak voltage 10V	(5)
		and frequency 1 kHz and draw the output waveform.	
7		Explain the operation of a square waveform generator using opamp.	(5)
8		Design a Wein bridge oscillator to generate a sinusoidal waveform of 1 kHz.	(5)

PART B

Answer any two full questions, each carries 10 marks

- 9 (a) Design a voltage divider bias circuit for a NPN transistor with hfe = 100 and V_{BE}= (5)
 0.6 V,to operate from a 12 V dc supply. The bias conditions are V_{CE}= 6V,
 V_E=1.2V and I_C=2 mA.
 - (b) Explain any one compensation technique used for reducing the drift of operating (5) point.
- 10 (a) Draw the h parameter model of a transistor in CE configuration. Also derive the (5) expression for input impedance, current gain and voltage gain.
 - (b) h-parameters of a transistor connected in CE configuration is $h_{ie} = 1000 \Omega$, $h_{re} = 10$ (5) $\times 10^{-4}$; $h_{fe} = 50$; hoe= $100 \times 10^{-6} \mho$. If the load resistance R_L is $1 K\Omega$, find: i) The input impedance ii) Current gain iii) Voltage gain
- 11 (a) Explain the working and characteristics of a N channel MOSFET.
 - (b) Draw the frequency response of an amplifier. What is the significance of gain (4) bandwidth product?

PART C

Answer any two full questions, each carries 10 marks

12 (a) What is harmonics distortion in power amplifier? Discuss the operation of a class (6)

Duration: 3 Hours

Marks

(6)

C3807

(4)

(6)

B power amplifier and derive its maximum power conversion efficiency.

C

- (b) Explain the working of a two stage RC coupled amplifier with circuit diagram.
- 13 (a) Derive the expression for the voltage gain of an opamp based non-inverting (5) amplifier.
 - (b) Derive the frequency of oscillation of a RC phase shift oscillator using transistor. (5)
- 14 (a) Write short notes on the following:(4)i) CMRRii) Slew rate
 - (b) Explain the operation of Hartley oscillator with a circuit diagram.

PART D

Answer any two full questions, each carries 10 marks

- 15 (a) Draw and explain the operation of logarithmic amplifier. (5)
 - (b) What is the significance of UTP and LTP in Schmitt trigger circuits? Why is it (5) called as regenerative comparator?
- 16 (a) What are the features of instrumentation amplifier? Derive the expression for (5) output voltage of an instrumentation amplifier.
 - (b) Draw and explain the operation of a Triangular waveform generator using (5) opamp
- 17 (a) With the help of internal circuit diagram of IC555 explain the operation of a (5) monostable multivibator.
 - (b) Design an astable multivibrator using 555 timer to generate an output signal with (5) frequency 5kHz and 50% duty cycle.