B3804

Reg No .:

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSET THIRD SEMESTER B.TECH DEGREE EXAMINATION, APRL 2

Course Code: EE201

Course Name: CIRCUITS AND NETWORKS (EE)

Max. Marks: 100

Duration: 3 Hours

PART A	nouib
Answer all questions, each carries 5 marks	Marks
Stat and explain reciprocity theorem.	(5)
Write down the properties of incidence matrix.	(5)
If an RLC series circuit is energised by a 10V DC source at t=0 sec. Draw the	(5)
expected graph of the following circuit variables under different damping	
conditions:	
i) The current through the circuit ii) Voltage across the capacitor.	
Find the current through circuit shown in Fig. 1.	(5)
	PART A Answer all questions, each carries 5 marks Stat and explain reciprocity theorem. Write down the properties of incidence matrix. If an RLC series circuit is energised by a 10V DC source at t=0 sec. Draw the expected graph of the following circuit variables under different damping conditions: i) The current through the circuit ii) Voltage across the capacitor. Find the current through circuit shown in Fig. 1.

Derive the condition for symmetry and reciprocity of Y-parameters.	(5)
What is h-parameters? Why they are called hybrid parameters?	(5)
What is the differentiate between network analysis and synthesis.	(5)
State the properties of LC driving point immittance function.	(5)

PART B

Answer any two full questions, each carries 10 marks

9

For the circuit shown in Fig. 2 find the value of R_L that absorbs maximum (10) power from the circuit and the corresponding power under this condition.

10

For the network shown in Fig. 3, draw the oriented graph, write the tie-set (10) schedule and hence obtain the equilibrium equations on loop basis. Calculate the values of branch current and branch voltages.

B3804

Figure 2

- 11 (a) Draw the Norton's equivalent circuit and Thevenin's equivalentcircuit of (5)Fig. 4.
 - (b) Obtain basic cutset matrix for the oriented graph shown in Fig. 5. Take 1,2,3 as (5), twigs.

PART C Answer any two full questions, each carries 10 marks

12

For the circuit shown in Fig.6, the DPDT switch at position 2 for a long time. (10) At t=0 sec. contact is moved from position 2 to 1 and at t= 10 sec. the contact is moved from 1 to 2. Derive a expression for the $i_C(t)$ and $v_C(t)$ in both cases. Plot variation of $i_C(t)$ and $v_C(t)$.

Page 2 of 3

B

B3804

(10)

(6)

Find the expression for the current through the inductor $i_L(t)$ in a parallel RLC (10) 13 (three branch) circuit when a step input of I amperes is applied across it at time t = 0. Assume all initial conditions are zero. Apply Laplace transform technique. The switch S in the circuit of Fig. 7 is in the closed position for long time. At (10) t=0, the switch opens. Find the expression for the current using Laplace

PART D Answer any twofull questions, each carries 10 marks Obtain the z parameters for the network in Fig. 8 as functions of s.

15

The Z- parameters of a two port network are $Z_{11}=10\Omega$, $Z_{22}=15\Omega$, $Z_{12}=Z_{21}=5\Omega$. (6)16 a) Find the equivalent T-network and ABCD parameters

Test whether the polynomial $P(s)=s^4+s^3+3s^2+2s+12$ is Hurwitz (4)b)

- Point out the difference in the philosophy between Foster and Cauer form of (4)17 a) synthesis of a given driving point impedance
 - The driving point impedance of a circuit is **b**)

$$Z(s) = \frac{2(s^2+1)(s^2+3)}{s(s^2+2)}$$

Realize the given impedance function Z(s)as a Cauer's first form.

14

transform.