A3801

Reg No.:

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSI

THIRD SEMESTER B.TECH DEGREE EXAMINATION APRIL

Course Code: MA201

Course Name: LINEAR ALGEBRA AND COMPLEX ANALYSIS

Max. Marks: 100

Duration: 3 Hours

PART A

Answer any two full questions, each carries 15 marks

Marks

(7)

(8)

- 1 a) Let f(z) = u(x, y) + iv(x, y) be defined and continuous in some neighbourhood point z = x + iy and differentiable at z itself. Then prove that the first order partial derivatives of u and v exist and satisfy the Cauchy – Riemann equations.
 - b) Prove that $u = \sin x \cosh y$ is harmonic. Hence find its harmonic conjugate.
- Find the image of the region $\left|z-\frac{1}{3}\right| \leq \frac{1}{3}$ under the transformation $w=\frac{1}{z}$ (8)
 - Find a linear fractional transformation which maps -1, 0, 1 onto 1, 1 + i, 1 + 2i. (7)
- Check whether the function $f(z) = \begin{cases} \frac{Re(z^2)}{|z|^2} & \text{if } z \neq 0 \\ 0 & \text{if } z = 0 \end{cases}$ is continuous at z = 0. 3 a) (7)
 - Find the image of the x-axis under the linear fractional transformation $w = \frac{z+1}{2z+4}$ (8)

PART B

Answer any two full questions, each carries 15 marks

- a) Evaluate $\int_C Im(z^2)dz$ where C is the triangle with vertices 0, 1, i counter-(7)clockwise.
 - Using Cauchy's Integral Formula, evaluate $\int_c \frac{z^2}{z^3-z^2-z+1} dz$ where c is taken (8)counter-clockwise around the circle:
 - i) $|z+1|=\frac{3}{2}$ ii) $|z-1-i| = \frac{\pi}{2}$
- 5 a) Determine and classify the singular points for the following functions: (7)
 - ii) $g(z) = (z+i)^2 e^{(\frac{1}{z+i})}$ i) $f(z) = \frac{\sin z}{(z-\pi)^2}$
 - (8)
- b) Evaluate $\int_{-\infty}^{\infty} \frac{1}{(1+x^2)^3} dx$. 6 a) Evaluate $\int_{C}^{\infty} \frac{\tan z}{z^2-1} dz$ counter clockwise around $c: |z| = \frac{3}{2}$ using Cauchy's Residue (7)
 - b) Find all Taylor series and Laurent series of $f(z) = \frac{-2z+3}{z^2-3z+2}$ with centre 0 in (8)
 - i) |z| < 1

ii) 1 < |z| < 2.

PART C

Answer any two full questions, each carries 20 marks

- 7 a) Solve the system of equations by Gauss Elimination Method: (8) 3x + 3y + 2z = 1, x + 2y = 4, 10y + 3z = -2, 2x 3y z = 5.
 - b) Prove that the vectors (1,1,2), (1,2,5), (5,3,4) are linearly dependent. (6)
 - c) Prove that the set of vectors $V = \{(v_1, v_2, v_3) \in \mathbb{R}^3 : -v_1 + v_2 + 4v_3 = 0\}$ a (6) vector space over the field \mathbb{R} . Also find the dimension and the basis.
- 8 a) Find the Eigen values and the corresponding Eigen vectors of (8) $A = \begin{bmatrix} 1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1 \end{bmatrix}$
 - b) What kind of conic section is given by the quadratic form $7x_1^2 + 6x_1x_2 + 7x_2^2 = (6)$ 200. Also find its equation.
 - c) Determine whether the matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & cos\theta & -sin\theta \\ 0 & sin\theta & cos\theta \end{bmatrix}$ symmetric, skew-symmetric or orthogonal. (6)
- 9 a) Reduce the matrix $A = \begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{bmatrix}$ to Row Echelon Form and hence (8)
 - find its rank.
 b) Diagonalize $A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 3 & -1 \\ 1 & -1 & 3 \end{bmatrix}$ (12)