APJ ABDUL KALAM TECHNOLOGICAL UNITERSITY FOURTH SEMESTER B.TECH DEGREE EXAMINATION APHI- FOURTH SEMESTER B.TECH DEGREE EXAMINATION APHI- FOURSE Name: PROBABILITY, RANDOM PROCESSES AND NUMERAL METHODS (AE, EC)Max. Marks: 100Duration: 3 Hours (Normal distribution table is allowed in the examination hall) PART A Answer any two full questions, each carries 15 marksMarks1a) A random variable X has the following probability distribution:(7) \overline{x} -2 -1 0 1 2 3 Find: i) The value of kii) Evaluate $P(X < 2)$ and $P(-2 < X < 2)$ iii) Evaluate the mean of Xb)The probability that a component is acceptable is 0.93 . Ten components are picked at random. What is the probability that: i) At least nine are acceptable(8)2a)Suppose that the length of a phone call in minutes is an exponential random variable telephone booth, find the probability that you will have to wait: i) More than 10 minutesii) Between 10 and 20 minutes.b)For a normally distributed population, 7% of items have their values less than 35 and 89% have their values less than 63. Find the mean and standard deviation of the distribution.(8)3a)Fit a binomial distribution to the following data and calculate the theoretical frequencies.(8)b)The time between breakdowns of a particular machine follows an exponential(7)	A Reg N	o.:				E4802	2	Name:	CI-HI C	STOT	ATION STREET	2	
Course Name: PROBABILITY, RANDOM PROCESSES AND NUMERICAL METHODS (AE, EC)Max. Marks: 100Duration: 3 Hours (Normal distribution table is allowed in the examination hall) PART A 	APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY												
Max. Marks: 100Duration: 3 Hours(Normal distribution table is allowed in the examination hall) PART AAnswer any two full questions, each carries 15 marksMarks1a)A random variable X has the following probability distribution:(7) x -2 -1 0 1 2 3 Find: i)The value of kii)Evaluate $P(X < 2)$ and $P(-2 < X < 2)$ (8)iii)Evaluate the mean of Xb)The probability that a component is acceptable is 0.93 . Ten components are picked(8)at random. What is the probability that:i)At least nine are acceptableii)At most three are acceptable.2a)Suppose that the length of a phone call in minutes is an exponential random variable(7)with parameter $\lambda = \frac{1}{10}$. If someone arrives immediately ahead of you at a public(7)telephone booth, find the probability that you will have to wait:i)More than 10 minutesi)More than 10 minutesii)Between 10 and 20 minutes.b)For a normally distributed population, 7% of items have their values less than 35(8)and 89% have their values less than 63. Find the mean and standard deviation of the distribution.(8)a)Fit a binomial distribution to the following data and calculate the theoretical frequencies.(8)b)The time between breakdowns of a particular machine follows an exponential(7)	Course Name: PROBABILITY, RANDOM PROCESSES AND NUMERICAL METHODS												
(Normal distribution table is allowed in the examination hall) PART A Answer any two full questions, each carries 15 marks 1 a) A random variable X has the following probability distribution: (7) $ \frac{x -2 -1 0 1 2 3}{f(x) 0.1 k 0.2 2k 0.3 3k} $ Find: i) The value of k ii) Evaluate $P(X < 2)$ and $P(-2 < X < 2)$ iii) Evaluate the mean of X b) The probability that a component is acceptable is 0.93. Ten components are picked (8) at random. What is the probability that: i) At least nine are acceptable ii) At most three are acceptable. 2 a) Suppose that the length of a phone call in minutes is an exponential random variable (7) with parameter $\lambda = \frac{1}{10}$. If someone arrives immediately ahead of you at a public telephone booth, find the probability that you will have to wait: i) More than 10 minutes ii) Between 10 and 20 minutes. b) For a normally distributed population, 7% of items have their values less than 35 (8) and 89% have their values less than 63. Find the mean and standard deviation of the distribution. 3 a) Fit a binomial distribution to the following data and calculate the theoretical (8) frequencies. $ \frac{x 0 1 2 3 4 5 6 7 8}{f 2 7 113 15 25 16 11 8 3} $ b) The time between breakdowns of a particular machine follows an exponential (7)													
PART A Answer any two full questions, each carries 15 marksMarks1a)A random variable X has the following probability distribution:(7) x -2 -1 0 1 2 3 $f(x)$ 0.1 k 0.2 $2k$ 0.3 $3k$ Find: i) The value of kii) Evaluate $P(X < 2)$ and $P(-2 < X < 2)$ iii) Evaluate the mean of Xb)The probability that a component is acceptable is 0.93 . Ten components are picked(8)at random. What is the probability that:i) At least nine are acceptableii) At most three are acceptable.2a)Suppose that the length of a phone call in minutes is an exponential random variable(7)with parameter $\lambda = \frac{1}{10}$. If someone arrives immediately ahead of you at a publictelephone booth, find the probability that you will have to wait:i) More than 10 minutesii) Between 10 and 20 minutes.b) For a normally distributed population, 7% of items have their values less than 35(8)and 89% have their values less than 63. Find the mean and standard deviation of the distribution.3a) Fit a binomial distributi	Max. Marks. 100												
 1 a) A random variable X has the following probability distribution: x -2 -1 0 1 2 3 f(x) 0.1 k 0.2 2k 0.3 3k Find: i) The value of k ii) Evaluate P(X < 2) and P(-2 < X < 2) iii) Evaluate the mean of X b) The probability that a component is acceptable is 0.93. Ten components are picked (8) at random. What is the probability that: i) At least nine are acceptable ii) At most three are acceptable. 2 a) Suppose that the length of a phone call in minutes is an exponential random variable with parameter λ = 1/10. If someone arrives immediately ahead of you at a public telephone booth, find the probability that you will have to wait: i) More than 10 minutes ii) Between 10 and 20 minutes. b) For a normally distributed population, 7% of items have their values less than 35 and 89% have their values less than 63. Find the mean and standard deviation of the distribution. 3 a) Fit a binomial distribution to the following data and calculate the theoretical frequencies. x 0 1 2 3 4 5 6 7 8 7 b) The time between breakdowns of a particular machine follows an exponential (7)	PART A												
 x i) A function variation is accepted by the form of th													
 In the second state of the second state state of the second state stat	1 a)	A random variable X has the following probability distribution:										(7)	
 Find: i) The value of k ii) Evaluate P(X < 2) and P(-2 < X < 2) iii) Evaluate the mean of X b) The probability that a component is acceptable is 0.93. Ten components are picked (8) at random. What is the probability that: i) At least nine are acceptable ii) At most three are acceptable. 2 a) Suppose that the length of a phone call in minutes is an exponential random variable (7) with parameter λ = 1/10. If someone arrives immediately ahead of you at a public telephone booth, find the probability that you will have to wait: i) More than 10 minutes ii) Between 10 and 20 minutes. b) For a normally distributed population, 7% of items have their values less than 35 (8) and 89% have their values less than 63. Find the mean and standard deviation of the distribution. 3 a) Fit a binomial distribution to the following data and calculate the theoretical frequencies. ix 0 1 2 3 4 5 6 7 8 1 2 7 13 15 25 16 11 8 3 b) The time between breakdowns of a particular machine follows an exponential (7)			х	-2	-1	0	1		2	3			
 iii) Evaluate the mean of X b) The probability that a component is acceptable is 0.93. Ten components are picked (8) at random. What is the probability that: i) At least nine are acceptable ii) At most three are acceptable. 2 a) Suppose that the length of a phone call in minutes is an exponential random variable (7) with parameter \$\lambda = \frac{1}{10}\$. If someone arrives immediately ahead of you at a public telephone booth, find the probability that you will have to wait: i) More than 10 minutes ii) Between 10 and 20 minutes. b) For a normally distributed population, 7% of items have their values less than 35 and 89% have their values less than 63. Find the mean and standard deviation of the distribution. 3 a) Fit a binomial distribution to the following data and calculate the theoretical frequencies. ix 0 1 2 3 4 5 6 7 8 1 1 8 3 b) The time between breakdowns of a particular machine follows an exponential (7) 			f(x)	0.1	k	0.2	2k		0.3	3k]		
 iii) Evaluate the mean of X b) The probability that a component is acceptable is 0.93. Ten components are picked (8) at random. What is the probability that: i) At least nine are acceptable ii) At most three are acceptable. 2 a) Suppose that the length of a phone call in minutes is an exponential random variable (7) with parameter λ = 1/10. If someone arrives immediately ahead of you at a public telephone booth, find the probability that you will have to wait: i) More than 10 minutes ii) Between 10 and 20 minutes. b) For a normally distributed population, 7% of items have their values less than 35 and 89% have their values less than 63. Find the mean and standard deviation of the distribution. 3 a) Fit a binomial distribution to the following data and calculate the theoretical frequencies. x 0 1 2 3 4 5 6 7 8 1 2 7 13 15 25 16 11 8 3 b) The time between breakdowns of a particular machine follows an exponential (7)		Find: i)											
 at random. What is the probability that: i) At least nine are acceptable ii) At most three are acceptable. 2 a) Suppose that the length of a phone call in minutes is an exponential random variable (7) with parameter λ = 1/10. If someone arrives immediately ahead of you at a public telephone booth, find the probability that you will have to wait: i) More than 10 minutes ii) Between 10 and 20 minutes. b) For a normally distributed population, 7% of items have their values less than 35 (8) and 89% have their values less than 63. Find the mean and standard deviation of the distribution. 3 a) Fit a binomial distribution to the following data and calculate the theoretical frequencies. b) The time between breakdowns of a particular machine follows an exponential (7) 													
 i) At least nine are acceptable ii) At most three are acceptable. 2 a) Suppose that the length of a phone call in minutes is an exponential random variable (7) with parameter λ = 1/10. If someone arrives immediately ahead of you at a public telephone booth, find the probability that you will have to wait: i) More than 10 minutes ii) Between 10 and 20 minutes. b) For a normally distributed population, 7% of items have their values less than 35 (8) and 89% have their values less than 63. Find the mean and standard deviation of the distribution. 3 a) Fit a binomial distribution to the following data and calculate the theoretical frequencies. x 0 1 2 3 4 5 6 7 8 1 1 8 3 b) The time between breakdowns of a particular machine follows an exponential (7) 	b)	The prob	The probability that a component is acceptable is 0.93. Ten components are picked (8)										
 2 a) Suppose that the length of a phone call in minutes is an exponential random variable (7) with parameter λ = 1/10. If someone arrives immediately ahead of you at a public telephone booth, find the probability that you will have to wait: i) More than 10 minutes ii) Between 10 and 20 minutes. b) For a normally distributed population, 7% of items have their values less than 35 (8) and 89% have their values less than 63. Find the mean and standard deviation of the distribution. 3 a) Fit a binomial distribution to the following data and calculate the theoretical frequencies. x 0 1 2 3 4 5 6 7 8 / f 2 7 13 15 25 16 11 8 3 b) The time between breakdowns of a particular machine follows an exponential (7)													
 with parameter λ = 1/10. If someone arrives immediately ahead of you at a public telephone booth, find the probability that you will have to wait: More than 10 minutes Between 10 and 20 minutes. b) For a normally distributed population, 7% of items have their values less than 35 (8) and 89% have their values less than 63. Find the mean and standard deviation of the distribution. 3 a) Fit a binomial distribution to the following data and calculate the theoretical (8) frequencies. x 0 1 2 3 4 5 6 7 8 / f 2 7 13 15 25 16 11 8 3 b) The time between breakdowns of a particular machine follows an exponential (7) 			i) At least nine are acceptable ii) At most three are acceptable.										
 telephone booth, find the probability that you will have to wait: More than 10 minutes Between 10 and 20 minutes. b) For a normally distributed population, 7% of items have their values less than 35 (8) and 89% have their values less than 63. Find the mean and standard deviation of the distribution. 3 a) Fit a binomial distribution to the following data and calculate the theoretical frequencies. x 0 1 2 3 4 5 6 7 8 f 2 7 13 15 25 16 11 8 3 b) The time between breakdowns of a particular machine follows an exponential (7)	2 a)	-	Suppose that the length of a phone call in minutes is an exponential random variable (7)										
 telephone booth, find the probability that you will have to wait: More than 10 minutes Between 10 and 20 minutes. b) For a normally distributed population, 7% of items have their values less than 35 (8) and 89% have their values less than 63. Find the mean and standard deviation of the distribution. 3 a) Fit a binomial distribution to the following data and calculate the theoretical frequencies. x 0 1 2 3 4 5 6 7 8 f 2 7 13 15 25 16 11 8 3 b) The time between breakdowns of a particular machine follows an exponential (7)		with par	with parameter $\lambda = \frac{1}{10}$. If someone arrives immediately ahead of you at a public										
 i) More than 10 minutes ii) Between 10 and 20 minutes. b) For a normally distributed population, 7% of items have their values less than 35 (8) and 89% have their values less than 63. Find the mean and standard deviation of the distribution. 3 a) Fit a binomial distribution to the following data and calculate the theoretical (8) frequencies. x 0 1 2 3 4 5 6 7 8 f 2 7 13 15 25 16 11 8 3 b) The time between breakdowns of a particular machine follows an exponential (7) 													
 and 89% have their values less than 63. Find the mean and standard deviation of the distribution. 3 a) Fit a binomial distribution to the following data and calculate the theoretical (8) frequencies. x 0 1 2 3 4 5 6 7 8 f 2 7 13 15 25 16 11 8 3 b) The time between breakdowns of a particular machine follows an exponential (7) 		-											
 distribution. 3 a) Fit a binomial distribution to the following data and calculate the theoretical (8) frequencies. x 0 1 2 3 4 5 6 7 8 b) The time between breakdowns of a particular machine follows an exponential (7) 	b		For a normally distributed population, 7% of items have their values less than 35 (8)										
 3 a) Fit a binomial distribution to the following data and calculate the theoretical (8) frequencies. x 0 1 2 3 4 5 6 7 8 15 25 16 11 8 3 b) The time between breakdowns of a particular machine follows an exponential (7) 		and 89%											
frequencies. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$												(0)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 a)) Fit a bi	nomial dist	tributio	on to t	he foll	lowing	data a	and cal	culate tl	he theoretical	(8)	
b) The time between breakdowns of a particular machine follows an exponential (7)		frequenc	cies.		T -	-		-			0		
b) The time between breakdowns of a particular machine follows an exponential (7)													
			Capital Capital	S						-		(7)	
11 + 12 + 13 $11 + 12 + 13$ $12 +$	b												
distribution, with a mean of 17 days. Calculate the probability that a machine breaks					of 1 / da	ys. Cai	culate	the pro	oadiniy	inat a m)	
down in a 15 day period. PART B		down in	a 15 day pe	erioa.		DA	рт р						
Answer any two full questions, each carries 15 marks			Ans	wer an	v two fu			each car	rries 15	marks			
4 a) The joint PDF of two continuous random variables X and Y is given by (7)	4 a) Th									given by	(7)	
$f(x,y) = \begin{cases} kxy & 0 < x < 4, \ 1 < y < 5\\ 0 & otherwise \end{cases}.$			-										
Find: i) k ii) The marginal distributions of X and Y iii) Check whether X and y are independent.		Find:	,	1		-				ľ			

3 - 2

b) A distribution with unknown mean μ has variance equal to 1.5. Use Central Limit (8) Theorem to find how large a sample should be taken from the distribution in order that the probability will be at least 0.95 that the sample mean will be within 0.5 of the population mean.

E4802

- 5 a) The autocorrelation function for a stationary process X(t) is given by R_{XX}(τ) = (7) 9 + 2e^{-|τ|}. Find the mean value of the random variable Y = ∫_{τ=0}² X(t)dt and the variance of X(t).
 b) A random process X(t) is defined by X(t) = Y(t) cos(ωt + θ) Where Y(t) is a (8)
 - WSS process, ω is a constant and θ is a random variable which is uniformly distributed in $[0,2\pi]$ and is independent of Y(t). Show that X(t) is WSS.
- 6 a) Consider the random process X(t) = A cos(ωt + θ) where A and ω are constants (7) and θ is a uniformly distributed random variable in (0,2π). Check whether or not the process is WSS.

(8)

b) The joint PDF of two continuous random variables X and Y is

$$f(x,y) = \begin{cases} 8xy, 0 < y < x < 1\\ 0, \quad otherwise \end{cases}$$

Α

i) Check whether X and Y are independent ii) Find P(X + Y < 1)

PART C

Answer any two full questions, each carries 20 marks

- 7 a) The number of particles emitted by a radioactive source is Poisson distributed. The source (4) emits particles at a rate of 6 per minute. Each emitted particle has a probability of 0.7 of being counted. Find the probability that 11 particles are counted in 4 minutes.
 - b) Assume that a computer system is in any one of the three states: busy, idle and under (8) repair, respectively, denoted by 0,1,2. Observing its state at 2 P. M. each day, the transition probability matrix is $P = \begin{bmatrix} 0.6 & 0.2 & 0.2 \\ 0.1 & 0.8 & 0.1 \end{bmatrix}$

$$= \begin{bmatrix} 0.1 & 0.8 & 0.1 \\ 0.6 & 0 & 0.4 \end{bmatrix}$$

Find out the third step transition probability matrix and determine the limiting probabilities.

c) If customers arrive at a counter in accordance with a Poisson process with a mean rate of 2 (8) per minute, find the probability that the interval between two consecutive arrivals is:

i) More than 1 minute ii) Between 1 minute and 2 minutes

iii) Less than or equal to 4minutes.

8 a) Use Trapezoidal rule to evaluate $\int_0^1 x^3 dx$ considering five subintervals (4)

Using Newton's forward interpolation formula, find y at x = 8 from the following b) (8) 5 20 25 table: **x** : 0 10 15 24 14 18 32 **v**: 7 11

c) Using Euler's method, solve for y at x = 0.1 from $\frac{dy}{dx} = x + y + xy$, y(0) = 1 (8) taking step size h = 0.025.

9 a) The transition probability matrix of a Markov chain $\{X_n, n \ge 0\}$ having three states (10) 1.2 and 2 is $P = \begin{bmatrix} 0.2 & 0.3 & 0.5 \\ 0.1 & 0.6 & 0.2 \end{bmatrix}$ and the initial probability distribution is

1, 2 and 3 is
$$P = \begin{bmatrix} 0.1 & 0.6 & 0.3 \\ 0.4 & 0.3 & 0.3 \end{bmatrix}$$
 and the initial probability distribution is

$$p(0) = [0.5 \quad 0.3 \quad 0.2]$$
. Find the following:

i) $P\{X_2 = 2\}$ ii) $P\{X_3 = 3, X_2 = 2, X_1 = 1, X_0 = 3\}$.

- b) Using Newton-Raphson method, compute the real root of $f(x) = x^3 2x 5$ (5) correct to 5 decimal places.
- c) Using Lagrange's interpolation formula, find the values of y when x = 10 from (5) the following table :