A2801

Reg No.:_

_

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY SECOND SEMESTER B.TECH DEGREE EXAMINATION, APRIL 2018

Name

Course Code: MA102

Course Name: DIFFERENTIAL EQUATIONS

Max. Marks: 100

Duration: 3 Hours

Pages: 2

RUS

PART A

	Answer all questions, each carries 3 marks.	Marks			
1	Solve the initial value problem $xy' = y - 1$, $y(0) = 1$	(3)			
2	Solve the following differential equation by reducing it to first order $xy'' = 2y'$.	(3)			
3	Find the particular integral of $(D^2 + 3D + 2)y = 3$.	(3)			
4	Find the particular integral of $y'' + y = \sin x$.	(3)			
5	Obtain the Fourier series expansion for the function $f(x) = x$ in the range $-\pi < \pi$	(3)			
	$x < \pi$.				
6	Find the Fourier sine series of the function $f(x) = \pi x - x^2$ in the interval $(0, \pi)$	(3)			
7	Form a partial differential equation by eliminating the arbitrary function in $xyz =$	(3)			
	$\phi(x+y+z)$				
8	Solve $r + s - 2t = e^{x+y}$.	(3)			
9	Solve one dimensional wave equation for $k < 0$.	(3)			
10	Solve $\frac{\partial u}{\partial x} - 2\frac{\partial u}{\partial y} - u = 0$, $u(x, 0) = 6e^{-3x}$ using method of separation of variables.	(3)			
11	Find the steady state temperature distribution in a rod of length 30cm if the ends are	(3)			
	kept at 20° C and 80° C.				
12	Write down the possible solutions of one dimensional heat equation.	(3)			
	PART B				
Answer six questions, one full question from each module.					
	Module I				
13	a) Verify that the given functions $x^{\frac{3}{2}}$, $x^{-\frac{1}{2}}$ are linearly independent and form a basis of	. (6)			
	solution space of given ODE $4x^2y'' - 3y = 0$.				
	b) Solve the boundary value problem:	(5)			
	y'' - 10y' + 25y = 0, $y(0) = 1$, $y(1) = 0$.				
	OR				
14	a) Find the general solution of $y''' + 2y'' + y = 0$.	(6)			
	b) Find a fundamental set of solutions of $2t^2y'' + 3ty' - y = 0, t < 0$. Given that	: (5)			
	$y_1(t) = \frac{1}{t}$ is a solution.				
	Module II				
15	5 a) Find the particular integral of $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = 4\cos^2 x$.	(6)			
	b) Solve $\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = \frac{e^{3x}}{r^2}$ using method of variation of parameters.	(5)			
	ax ² ax CR				
16	6 a) Solve $x^2y'' - xy' - 3y = x^2 \ln x$	(6)			
10	b) Solve $v'''' - 2v''' + 5v'' - 8v' + 4v = e^x$.	(5)			

A

Module III

		Middule III			
17	a)	Obtain the Fourier series expansion of $f(x) = x \sin x$ in the interval $(-\pi, \pi)$.	(6)		
	b)	Find the half range sine series of $f(x) = k$ in the interval $(0, \pi)$.	(5)		
	OR				
18	a)	Find the Fourier series of $f(x) = \left(\frac{\pi - x}{2}\right)^2$ in the interval $(0, 2\pi)$.	(6)		
	b)	Find the half range sine series of $f(x) = e^x$ in (0,1).	(5)		
		Module IV			
19	a)	Solve $\frac{\partial^3 z}{\partial x^3} - 4 \frac{\partial^3 z}{\partial x^2 \partial y} + 4 \frac{\partial^3 z}{\partial x \partial y^2} = 2 \sin(3x + 2y)$	(6)		
	b)	Solve $x(y^2 - z^2)p + y(z^2 - x^2)q = z(x^2 - y^2)$	(5)		
OR					
20	a)	Form the PDE by eliminating <i>a</i> , <i>b</i> , <i>c</i> from $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$	(6)		
	b)	Solve $(x + y)zp + (x - y)zq = x^2 + y^2$.	(5)		
Module V					
21		A tightly stretched violin string of length 'a' and fixed at both ends is plucked at	(10)		
		its mid-point and assumes initially the shape of a triangle of height 'h'. Find the			
		displacement $u(x,t)$ at any distance 'x' and any time 't' after the string is released			
		from rest.			
		OR	(10)		
22		Solve the PDE $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$.	(10)		
		Boundary conditions are $u(0,t) = u(l,t) = 0, t \ge 0$			
		Initial conditions are $y(x, 0) = a \sin\left(\frac{\pi x}{l}\right)$ and $\frac{\partial y}{\partial t} = 0$ at $t = 0$.			
		Module VI			
23		A rod, 30 cm long has its ends A and B kept at 20°C and 80°C respectively, until	(10)		
		the steady state conditions prevail. The temperature at each end is then suddenly			
		reduced to 0° C and kept so. Find the resulting temperature function $u(x,t)$ taking			
		x=0 at A.			
		OR	(1.0)		
24		A long iron rod with insulated lateral surface has its left end maintained at a	(10)		
		temperature 0° C and its right end at x=2, maintained at 100°C. Determine the			
		temperature as a function of 'x' and 't' if the initial temperature is			

 $u(x,0) = \begin{cases} 100x , & 0 < x < 1 \\ 100 , & 1 < x < 2 \end{cases}$

.
