APJ ABDUL KALAM TECHNOLOGICAL UNIVERSIT

08 PALAKKAD CLUSTER

6221-17Dec-1

(pages: 2)

Name: Reg No:

FIRST SEMESTER M.TECH. DEGREE EXAMINATION DEC 201

(POWER ELECTRONICS)

Subject ID: 08EE6221

Time:3 hours

SUBJECT NAME: SYSTEM DYNAMICS

Max. marks: 60

DUCA

Answer all six questions. Part 'a' of each question is compulsory.

Answer either part 'b' or part 'c' of each question

Q.no.	Module 1	Marks				
1.a	Mention the properties of state transition matrices	3				
	Answer b or c					
b	Obtain two different state model of the system represented by transfer functioni $\frac{C(s)}{R(s)} = \frac{10(s+4)}{s(s+1)(s+3)}$	6				
C	Obtain the time response of the system represented by state equation for unit step input	6				
ii Ar	$\dot{x} = Ax(t) + Bu(t)$					
	$\mathbf{y}(\mathbf{t}) = \mathbf{C}\mathbf{x}(\mathbf{t})$					
ų.	where $A = \begin{bmatrix} -8 & 6 \\ -6 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 4 \\ -6 \end{bmatrix}$, $C = \begin{bmatrix} 1 & -1 \end{bmatrix}$ and $x(0) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$					
Q.no.	Module 2	Marks				
2.a •	Obtain a state space representation of the following pulse transfer function in diagonal canonical form	3				
	$\frac{Y(z)}{U(z)} = \frac{1+6z^{-1}+8z^{-2}}{1+4z^{-1}+3z^{-2}}$					
Answer b or c						
b	Explain discretization of continuous time system	6				
C	Obtain the state transition matrix of the discrete system represented by state equation	6				
	X(k+1) = Gx(k), where G = $\begin{bmatrix} 0 & 1 \\ -12 & 7 \end{bmatrix}$,					

		-		
	1° e • • •1			
di san				
	Q.no.		Marks	
	3.a	Write and explain mathematical definition for stability	3	
		Answer b or c		
6	b	A non-linear system is described by the equations	6	
100 - 100 -		$\mathbf{x}_{1}^{*} = -\mathbf{x}_{1} - \mathbf{x}_{2}^{2}$		
		$x_{2}^{*} = -x_{2}$		
	ha rd	By using variable gradient method, investigate the stability of the system		
	C	State and explain Lyapunov stability theorem for continuous time linear systems	6	
90 1	Q.no.	Module 4	Marks	
	4.a	State and explain the concept of Controllability and Observability mentioning its	3	
		physical significance		
		Answer b or c		
	b	State and prove Controllability and Observability test for continuous time systems	6	
	c	Explain controllability concept based on canonical forms of state model	6	
		Module 5		
		en e		
	Q.no.		Marks	
	5.a	Explain the effect of state feedback on controllability	4	
1. ×1	÷.,	Answer b or c		
	b	Explain the design of full order Observer for Continuous time systems	8	
20 DB	с	Derive Ackerman's formula for the pole placement using state feedback	8	•
	Q.no.	Module 6	Marks	
	6.a	Explain the formulation of state regulator problem	4	
		Answer b or c		
	b	A system is represented by	8	
		$\begin{array}{c} \bullet \\ X(t) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}_{X(t)} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}_{U(t)}.$		
		If the cost function is $\int_0^{\infty} (x^2 + u^2) dt$ form the Riccati equation and solve to get the optimal control law.		
	с	Illustrate with an example the design of Robust PID Controller system	8	