APJ ABDULKALAM TECHNOLOGICAL UNIVERSITA

00 7 17 1777	
08 PALAKKAD	CLUSTER

7221(A)-17Dec-1

(Pages: 3)

Reg. No:

THIRD SEMESTER M.TECH. DEGREE EXAMINATION DECEMBE **Branch: Electrical Engineering**

Specialization: Power E

08EE 7221(A) SOFT COMPUTING TECHNIQUES

Time: 3 hours

Max.marks: 60

Answer all six questions. Part 'a' of each question is compulsory. Answer either part 'b' or part 'c' of each questions

Q.no.		Mo	dule '	1		Marks
1.a	Explain the features of membership function?				3	
	Answer b or c					
b	For the fuzzy relation R , $R =$	0.2 0.3 0.4	0.5 0.5 0.6	0.7 1 0.7 1 0.8 0.9	0.9 0.8 0.4	6
	Find the λ cut relation for $\lambda = 0$				9.1	

An athletic race was conducted. The following membership function are defined based the speed of athletes

Low
$$= \left\{ \frac{0}{100} + \frac{0.1}{200} + \frac{0.3}{300} \right\}$$
Medium
$$= \left\{ \frac{0.5}{100} + \frac{0.57}{200} + \frac{0.6}{300} \right\}$$

$$= \left\{ \frac{0.8}{100} + \frac{0.9}{200} + \frac{0}{300} \right\}$$

Find the Following (i) $_{\sim}^{R} = _{\sim}^{Low} X \xrightarrow{Medium}$ (ii) $_{\sim}^{S} = _{\sim}^{Medium} X \xrightarrow{High}$ (iii) $_{\sim}^{T} = _{\sim}^{R} \rho _{\sim}^{S}$ using Max-Mini Composition (iv) $_{\sim}^{T} = _{\sim}^{R} \rho _{\sim}^{S}$ using Max-Product Composition

Q.no.	Module 2	Marks
2.a	Draw a simple artificial neuron and discuss the calculation of net input?	3
	Answer b or c	
b	Implement XOR function using Mc-Culloch-Pitts neuron (consider binary Data) ?	6
C	Define network architecture and give its classifications?	6
		P.T.O

	Module 3	Marks
Q.no.	Module	3
3.a	Explain the learning methods using in ANN?	•
	Answer b or c	
b	Implement AND function using Perceptron network for bipolar inputs and targets?	6
c	Find the new weight, using back-propagation network for the network shown in fig. The network is presented with the input pattern [1, -1] and the target output is +1. Use a learning rate of $\alpha = 0.3$ and bipolar sigmoidal activation function	
	Tunction	

l.no.	Module 6	Marks
6.a	Explain the Properties of Genetic Neuro-Hybrid System?	4
	Answer b or c	
b	Explain the applications of neuro-fuzzy hybrid system?	8
C	Explain the Genetic Algorithm based Back Propagation Network (BPN)	8