

# APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

#### **08 PALAKKAD CLUSTER**

Q. P. code :CSP0817131-J

(pages: 2)

Name.....

Reg No.....

# FIRST SEMESTER M. TECH. DEGREE EXAMINATION DEC 2017

## 08EC6531/08EC6231 ADVANCED DIGITAL SIGNAL PROCESSING

#### **Branch: Electronics & Communication Engineering**

(Common to CESP & ECE)

Time: 3 Hours

#### Max Marks: 60

Answer all six questions. Part 'a' of each question is compulsory

Answer either part 'b' or part 'c' of each question

## **Module I**

1.

2.

(a) Explain ideal features of a window function(b) Discuss the effects of finite word length of registers on digital FIR filter

Or

(c) Design a digital FIR filter with the following frequency response using hanning window. Use N=11

$$H_d(e^{jw}) = 1 \text{ for } 0.25\pi \le |w| \le \pi$$
  
= 0 for |w|=0.25\pi

6

3

6

# **Module II**

(a) Derive the expression for the order of a butterworth filter
(b) Locate the poles of a butterworth filter transfer function for the order N=4 and obtain the butterworth polynomial

Or

(c) Design a digital chebyshev low pass filter with  $\alpha_p = 1$ dB ripple in pass band  $0 \le w \le 0.2\pi$ ,  $\alpha_s = 15$  dB ripple in stop band  $0.3\pi \le w \le \pi$  using bilinear transformation

6

#### **Module III**

| (a) Differentiate up sampling and down sampling with an example        | 3 |
|------------------------------------------------------------------------|---|
| (b) Discuss the design of interpolators in detail                      | 6 |
| Or                                                                     |   |
| (c) Discuss the time domain and frequency domain analysis of decimator | 6 |

## **Module IV**

4.

5.

6.

3.

| (a) Explain any two properties of autocorrelation function     | 3 |
|----------------------------------------------------------------|---|
| (b) Explain modified periodogram for power spectral estimation | 6 |
| Or                                                             |   |

(c)Derive the expression for variance in Welch method for power spectral estimation 6

## **Module V**

| (a) Compare parametric and non parametric methods of power spectrum estimati | on. List |
|------------------------------------------------------------------------------|----------|
| the different methods of each case                                           | 4        |
| (b) Derive Yule Walker equations                                             | 8        |
| Or Or                                                                        |          |
| (c) Compare ARMA, MA and AR models                                           | 8        |

## **Module VI**

| (a) Differentiate stationary and non stationary signals with example | 4 |
|----------------------------------------------------------------------|---|
| (b) Explain the fourier analysis of stationary random signals        | 8 |
| Or                                                                   |   |
| (c) Explain the fourier analysis of non stationary random signals    | 8 |