APJ ABDULKALAM TECHNOLOGICAL UNIVERS
08 PALAKKAD CLUSTER

Q. P. Code: CSP0817151A-J

(Pages: 3)

Name

Reg. No:

FIRST SEMESTER M.TECH. DEGREE EXAMINATION DECEMBER

08EC 6251(A)INFORMATION THEORY

Branch: Electronics and Communication Engineering

Specialization: Communication Engineering and Signal Processing

Time:3 hours

Max.marks: 60

Answer all six questions.

Modules 1 to 6: Part 'a' if any of each question is compulsory and answer either part 'b' or part 'c' of each question.

Q.no.	Module 1	Marks
1.a	Define mutual information	50
	Answer b or c	3
b	Consider a discrete memoryless source with source alphabet $S=\{S_0S_1S_2\}$ and statistics $\{0.7,0.15,0.15\}$.	6
	(i) Calculate the entropy of the source	
	(ii) Calculate the entropy of the second order extension of the source.	
C	Find the overall channel capacity of two binary symmetric channels connected in cascade. Assume that both channels have same transition probability.	6
Q.no.	Module 2	Marks
2.a	Mention the applications of Kraft's inequality.	3
	Answer b or c	
b	State and prove Kraft's inequality.	6
c	Find the Shannon-Fano Elias code for the source with statistics {0.25, 0.25, 0.2, 0.15, 0.15}	6

Q.no.	Module 3	Marks
3.a	State and prove Shanon's source coding theorem.	3
	Answer b or c	
b	Explain the steps of arithmetic coding with an example.	6
c	Compute the Huffman for the source with statistics {0.25, 0.25, 0.125, 0.125, 0.125, 0.0625,0.625}. Find the average code word length and efficiency of the source code.	6
Q.no.	Module 4	Marks
4.a	Define channel capacity and explain its properties.	3

$$P = \begin{bmatrix} p & p & 0 & 0 \\ p & p & 0 & 0 \\ 0 & 0 & p & p \\ 0 & 0 & p & p \end{bmatrix}$$

Answer b or c

b Find the capacity of the channel with channel matrix

c Find the capacity of the channel with channel matrix and plot it as function of

$$P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & p & p \\ 0 & p & p \end{bmatrix}$$

Q.no. Module 5 Marks

5.a Show the relation between the differential entropy and discrete entropy. 4

Answer b or c

b Compute the differential entropy of normal distribution.

8

c Consider the continuous random variable Y defined by Y = X + N, where X and Y are statistically independent. Show that the conditional differential entropy of Y given X equals,

8

h(Y|X)=h(N)

where h(N) is the differential entropy of N.

Q.no.	Module 6	Marks
-		
6.a	Define Rate distortion function and explain its properties.	4
	Answer b or c	
b	A voice grade channel of the telephone network has bandwidth of 3.4kHz.	8
	(i) Calculate the information capacity of the telephone channel for a signal-to-noise ratio of 30dB.	
	(ii) Calculate the minimum signal to noise ratio required to support information transmission	
	through the telephone channel at the rate of 9,600 b/s.	
c		8
	Compute the rate distortion function for a binary source.	. 0