APJ ABDULKALAM TECHNOLOGICAL UNIVERSITY
08 PALAKKAD CLUSTER

Q. P. Code : 10 171

(Pages: 4)

Name ...

g. No: _____

FIRST SEMESTER M.TECH. DEGREE EXAMINATION December 2017

Branch: CS

08CS6041 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE

Time:3 hours

Max.marks: 60

Answer all six questions.

Modules 1 to 6: Part 'a' of each question is compulsory and answer either part 'b' or part 'c' of each question.

Q.no.

Module 1

Marks

1.8

Determine the eigen values of $A = \begin{bmatrix} 1 & 0 & 4 \\ 0 & 4 & 0 \\ 3 & 5 & -3 \end{bmatrix}$

3

Answer b or c | make and also select | as-

b Solve the following system of equations by LU decomposition method

6

$$3x + 2y + 7z = 4$$

$$2x + 3y + z = 5$$

$$3x + 4y + z = 7$$

Find the eigen values and eigen vectors of A^TA wher $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$. Also check $A = UDV^T$

6

Q.no.

Module 2

Marks

2.a Define Baye's theorem

1

Answer h or c

A STEPLING A COLOCULO DE LA MALANTE DE LA MANAGERE EN LA MANAGERE DE LA MANAGERE

- b The contents of Urn 1, Urn 2, Urn 3 are as follows, I white, 2 black and 3 red. 2 white, 1 black and 1 red balls and 4 white, 5 black and 3 red balls respectively. One Urn is chosen at random and 2 balls are drawn from it. They happen to be white and red. What is the probability that they come from Urn 1, 2 or 3.
- c Assume that the prior distribution for the proportion of defectives by a machine is P.

 The no; of defectives among the random sample is 2. Find the posterior distribution of P. Given that x is the observer which follows binomial distribution.

P	П(Р)
0.1	0.6
0.2	0.4

Q.no. Module 3 Marks

3.a Define Markov chain. What are the classifications of states of a Markov chain?

3

Answer b or c

b The one step TPM of a Markov chain { Xn : n=0,1,2,....} having state space S=(1,2,3) is

And the initial distribution is $\pi_0 = (0.7, 0.2, 0.1)$. Find

- 1) $P(X_2=3/X_0=1)$
- 2) $P(X_3=2, X_2=3, X_1=3, X_0=2)$
- $3)P(X_2=3)$
- c Let { Xn: n=0,1,2,....} be a Markov chain with state space S={0,1,2} and one step TPM

$$P = \begin{bmatrix} 0 & 1 & 0 \\ 1/4 & 1/2 & 1/4 \\ 0 & 1 & 0 \end{bmatrix}$$

- 1) Is the chain Ergodic?
- 2) Find the Invariant probabilities. \

Q.no.	Module 4	Marks
4.a	Define Poisson Process	3
	Answer b or c	
b	Prove that the inter arrival time of a Poisson Process with parameter λ follows an exponential distribution with mean $1/\lambda$.	6
ő C	Suppose that the customers arrive at a bank according to a Poisson Process with a mean rate of 3 per minute. Find the probability that during a time interval of 2 minutes	
	1) Exactly 4 customers arrive	
	2) Less than 4 customers arrive	
	3) More than 4 customers arrive	
Q.no.	Module 5	Marks
5.a	In the usual notation of a (M/M/1) : (∞ /FIFO) queue system find P(N>2) if λ =12/hrs. and μ =30/hrs.	4
	Answer b or c	
b	A supermarket has 2 servers servicing customers at counters. The customers arrive in a Poisson fashion at the rate of 30/ hrs. The service time for each customer is expected with mean 4 minutes. Find the probability that a customer has to wait for the service, avg. queue length and the avg. time spent by a customer in the queue.	
c	A beauty parlour shop with one beautician, ladies arrive according to a Poisson distribution with mean arrival rate of 5 per hour and a hair design was exponentially distributed with an avg. design taking in minutes. As it is a very good parlour, customers do have patients to wait. Find	8
	1) Avg. No: of ladies in the shop and the avg. no: of waiting to do the hair design.	
	2) % of time an arrival can walk inside the parlour without having to wait.	
	3) % of ladies who has to wait prior to getting into the chair for hair design.	
•		

the contract of the second of

and we have the second of the

-aphabon and the about any termination and a substitute quarter substitute and the making the Agric

AND THE AREA OF HIGH HIS THE AND ADDRESS OF THE