APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

08 PALAKKAD CLUSTER

6252(C)-April 17-2

(pages: 3)

Name: Reg No:

SECOND SEMESTER M.TECH. DEGREE EXAMINATION APRIL 2017

Electrical & Electronics Engineering

Power Electronics

08EE6252(C): DIGITAL CONTROL SYSTEMS

Time:3 hours

Max.marks: 60

0

Answer all six questions. Part 'a' of each question is compulsory. Answer either part 'b' or part 'c' of each question

Q.no.	Module 1	Marks
1.a	Explain series programming technique of discrete time systems	3
	Answer b or c	
b	Realize the pulse transfer function of a digital PID Controller	6
С	Solve the difference equation	6
~	x(k+2) -1.368x(k+1) + 0.368x(k) = 0.368u(k+1)+0.2642u(k)	
		* .

where x(k) = 0 for $k \le 0$. The input function u(k) is given by u(k) = 0 for

k < 0 and u(0) = 1, u(1)=0.2142, u(2)=-0.2142, u(k)=0 for k=3,4,5,...

Q.no.	Module 2	Marks
2.a	Explain stability analysis of a discrete time system using modified Routh stability Criteria.	3
	Answer b or c	
b.	Find static error coefficients of a discrete time system with pulse	e
	transform function given by $G(z) = \frac{0.5z}{(z-1)(z+0.5)}$	•

c Determine the pulse transfer function of the system shown in figure

6

.no.	Module 3	Marks
3.a	Explain the effect of sampling period on transient response specifications.	3
b	Answer b or c Design a digital controller for the system shown in figure using root locus method to meet the following specifications	6
	a) Velocity error constant , $k_v = 6$; b) peak overshoot to unit step input $\leq 15\%$ c) Settling Time (T _s \leq 5sec) Assume T=0.2sec	

c Explain the design procedure for a lead compensator based on frequency response approach for discrete time system.

		0
Q.no.	Module 4	Marks
4.a	Obtain the transfer function of a discrete time system from state model	3
	Answer b or c	
b	Derive an expression for diagonal canonical form of state space	6
	Tepresentation of discrete time system	
C	Obtain two different canonical state space representation of the following system transfer function	6
	$\frac{Y(z)}{U(z)} = \frac{4z^3 - 12z^2 + 13z - 7}{(z-1)^2(z-2)}$	
Q.no.	Module 5	Marks
5.a	Illustrate the method of obtaining state model in controllable canonical form using transformation matrix	4
	Answer b or c	
b	Obtain the state transition matix for the following system	8
	x(k+1) = G x(k) + H u(k)	
	$\dot{\mathbf{y}}(\mathbf{k}) = \mathbf{C} \mathbf{x}(\mathbf{k})$	
	With $G = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$	

c Obtain a discrete time representation of the following continuous time state space equation

8

$$\dot{x} = Ax + Bu$$

Q

y=Cx

With
$$A = \begin{bmatrix} 0 & 1 \\ 0 & -2 \end{bmatrix}$$
, $H = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

Q.no.

Module 6

6.a Explain the concept of controllability and Observability of a linear time invariant discrete time systems

Answer b or c

b Consider the system

x(k+1) = G x(k) + H u(k)

y(k)=Cx(k)

With
$$G = \begin{bmatrix} 0 & -0.16 \\ 1 & -1 \end{bmatrix}, H = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Determine observer feedback gain matrix K , such that desired eigen values for the observer matrix are z = 0.5 + j0.5 and z = 0.5 - j0.5

c Explain the design of state feedback system using pole placement technique

8

Marks

4

8