Total Pages: 2

(7)

(7)

(4)

Re	gNo	o.:	~ 13
		APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY THIRD SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2017	
		Course Code: MA201	UTHY
		Course Name: LINEAR ALGEBRA AND COMPLEX ANALYSIS	
M	ax. N	Marks: 100 Duration: 3	Hours
		PART A Answer any two full questions, each carries 15 marks.	Marks
1	a)	Find the points where Cauchy-Riemann equations are satisfied for the function	(7)
	,	$f(z) = xy^2 + i x^2 y$. Where does $f'(z)$ exist? Is the function $f(z)$ analytic at those	()
		points?	
	b)	If $v = e^x (x \sin y + y \cos y)$, find an analytic function $f(z)=u+iv$.	(8)
2	a)	Show that $u = x^2-y^2-y$ is harmonic. Also find the corresponding conjugate harmonic	(7)
		function.	
	b)	(i) Find a bilinear transformation which maps $(-i, 0, i)$ onto $(0, -1, \infty)$.	(8)
		(ii) Test the continuity at $z = 0$, if $f(z) = \frac{lm z}{ z }$, $z \neq 0$	
		=0, z=0	
3	a)	Find the image of the lines $x=1$, $y=2$ and $x>0$, $y<0$ under the mapping $W=z^2$	(8)
	b)	Find the image of the semi-infinite strip $x > 0$, $0 < y < 2$ under the transformation	(7)
		w=iz+1. Draw the regions.	
		PART B	-
		Answer any two full questions, each carries 15 marks.	
4	a)	Evaluate $\oint Re z^2 dz$ over the boundary C of the square with vertices 0, i, 1+ i,1	(8)
		clockwise	
	b)	Evaluate $\int \frac{4-3z}{z(z-1)} dz$ over the circle $ z = \frac{3}{2}$	(4)
	c)	Evaluate $\int \frac{3z^2+7z+1}{z+1} dz$ over the circle $ z+i =1$	(3)
5	a)	Expand $\frac{z}{}$ in (1) $0 \le z-2 \le 1$, (2) $ z-1 \ge 1$	(8)

6 a) Using Residue theorem evaluate $\int \frac{z^2}{(z-1)^2(z+2)} dz$ over the circle |z|=3

b) Find the Taylor series of $\frac{\sin z}{z-\pi}$ about the point $z=\pi$

b) Evaluate $\int_0^{2\pi} \frac{1}{2 + \cos \theta} d\theta$

c) Evaluate $\int \frac{\sin z}{z^6} dz$ over the circle |z|=2 using Cauchy's Residue theorem. (4)

PART C

Answer any two full questions, each carries 20 marks.

- 7 a) Solve by Gauss-Elimination method x + y + z = 6, x + 2y 3z = -4, -x 4y + 9z = 18. (7)
 - b) Find the values of 'a' and 'b' for which the system of equations x + y + 2z = 2, 2x-y+3z=10,5x-y+az=b has: (7)
 - (i) no solution (ii) unique solution (iii) infinite number of solutions.
 - c) Verify whether the vectors (1,2,1,2), (3,1,-2,1), (4,-3,-1,3) and (2,4,2,4) are linearly independent in \mathbb{R}^4 .
- 8 a) Write down the matrix associated with the quadratic form $8x_1^2 + 7x_2^2 + 3x_3^2 12x_1x_2$ $-8x_2x_3 + 4x_3x_1$. By finding eigen values, determine nature of the quadratic form. (7)
 - b) Diagonalise the matrix $A = \begin{bmatrix} 1 & -2 & 0 \\ -2 & 0 & 2 \\ 0 & 2 & -1 \end{bmatrix}$ (7)
 - c) If A is a symmetric matrix, verify whether AA^{T} and $A^{T}A$ are symmetric? (6)
- 9 a) Find the eigen vectors of $A = \begin{bmatrix} 3 & 0 & 0 \\ 5 & 4 & 0 \\ 3 & 6 & 1 \end{bmatrix}$ (8)
 - b) Find the null space of AX=0 if A= $\begin{bmatrix} 1 & 1 & 0 & 2 \\ -2 & -2 & 1 & -5 \\ 1 & 1 & -1 & 3 \\ 4 & 4 & -1 & 9 \end{bmatrix}$ (6)
 - Verify whether $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}$ is orthogonal. (6)

What can you say about determinant of an orthogonal matrix? Prove or disprove the result.
