Reg No.:____

Max. Marks: 100

Name:

Total Bag

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSIT

Course Code: PH100

Course Name: ENGINEERING PHYSICS

Duration: 3 Hours

PART A				
	Answer all questions. Each question carries 2 marks	Marks		
1	What is meant by amplitude resonance? Give any two examples.	(2)		
2	Define frequency and wavelength of a wave.	(2)		
3	What are non reflecting films?	(2)		
4	Compare interference and diffraction of light.	(2)		
5	What is Kerr effect? Give the equation.	(2)		
6	Write down four important applications of Super conductors.	(2)		
7	What is tunnelling effect?	(2)		
8	Define phase space.	(2)		
	Define intensity of sound .Give the values of threshold of hearing and threshold			
9	of pain.	(2)		
10	What is meant by non destructive testing (NDT)? Name an NDT technique?	(2)		
11	Define the terms population inversion and meta stable level.	(2)		
12	What is an LED? Give its working principle.	(2)		

PART B

Answer any 10 questions. Each question carries 4 marks

13		The frequency of a tuning fork is 250 Hz and its Q-factor is 4×10^4 . Find the	(4)
		relaxation time. Also calculate the time after which its energy becomes $1/10$ of its	
		initial undamped value.	
14	а	Obtain the differential equation of the oscillation of an electric circuit.	(2)
	b	Compare it with mechanical oscillator.	(2)
15	а	What is Rayleigh's criterion for spectral resolution?	(2)
	b	Obtain the expression for resolving power of a plane transmission grating.	(2)
16		What is the higher order spectrum which may be obtained with a light of	(4)
		wavelength 5500 Å using a plane transmission grating having 4500 lines per cm.	
17		The refractive indices of Quartz for light of wavelength 5890 Å are 1.5539 for	(4)
		ordinary ray and 1.5634 for extra ordinary ray.Calculate the required thickness of	
		the Quartz crystal for making a) a QWP and b) a HWP.	
18	а	What is Meissner effect?	(2)
	b	What are Type I and Type II Superconductors(any two points)?	(2)
19	а	What are the important postulates of Bose-Einstein Statistics?	(3)
	b	Write down the distribution equation of BE Statistics.	(1)
20		State Uncertainty principle. Using this principle calculate the uncertainty in	(4)
		frequency of the emitted radiation if the uncertainty in time of an excited atom is	

18.20

5 x 10⁻⁸ s.

The volume of a hall is 6000 m^3 . It has a total absorption of 150m^2 sabin. If the (4) hall is filled with audience who add another 80 m² sabin, find the difference in reverberation time.

- 22 An ultrasonic source of 0.085 MHz sends down a pulse towards the sea water (4) which returnsafter **0.6** sec. The velocity of sound in water is 1800m/s. Calculate the depth of the sea and wavelength of pulse.
- 23 With the help of a diagram explain how a hologram is recorded? (4)
- 24 Give any four advantages of optical fibre over conventional transmission lines? (4)

PART C

Answer any three questions. Each question carries 6 marks

25 Considering transverse vibrations of a stretched string derive one dimensional (6) wave equation.

26 a Draw the neat diagram of air wedge experiment.

- (2)
- b Derive an expression for the bandwidth of the interference fringes using this (4) arrangement.
- Given two Nicol prisms and a Quarter wave plate. How can we produce and (6) analyseplane, circularly and elliptically polarized light.

28 Starting from the time dependent equation, derive Schrodinger's time (6) independent wave equation.

PART D

Answer	anv	three	auestions.	Each	auestion	carries 6	marks
AUSIVEI	unv	1111 66	questions.	Luch	question	CHIIICO U	110001100

29		Define Reverberation and Reverberation time.	(6)
		What is the significance of Reverberation time? Compare Reverberation and	
		Echo.	
30	a	What is inverse piezoelectric effect?	(2)
	b	Describe the method of producing ultrasonic waves using this effect.	(4)
31	a	Draw the energy level diagram and explain the working of He-Ne laser.	(5)
	b	What are the important applications of He-Ne Laser?	(1)

32 a Define numerical aperture and fibre acceptance angle of an optic fibre. (2)
b Derive an expression for numerical aperture (NA) of a step indexfibre. (4)

B

21