		ME				
		GG- U	ATTO			
Α		A7001	NAT D			
		Total Bages 3				
Re	g No.:	Name:	*			
		APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 201	THURUTH			
		Course Code: MA101				
		Course Name: CALCULUS				
Ma	ax. Ma	arks: 100 Duration: 3	Hours			
		Answer all questions, each carries5 marks.	Marks .			
1	a)	Test the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{n}$	(2)			
	• •	$\sum_{k=1}^{3} \sqrt{2k-1}$				
	D)	Find the radius of convergence of $\sum_{n=1}^{\infty} \frac{x^n}{x^n}$.	(3)			
2	a)	Find the Slope of the surface $z = uz^{-1} + 5u$ in the surface static	(2)			
2	b)	Find the slope of the surface $z = xe^{-1} + 3y$ in the y-direction at the point (4,0).	(2)			
		Find the derivative of $z = \sqrt{1 + x - 2xy}$ with respect to t along the path $x = \log t$, $y = 2t$	(-)			
3	a)	Find the directional derivative of $f = x^2 y - yz^3 + z$ at $(-1, 2, 0)$ in the direction of	(2)			
		a = 2i + j + 2k.	i i			
	b)	Find the unit tangent vector and unit normal vector to $r(t) = 4\cos ti + 4\sin tj + tk$	(3)			
		at $t = \frac{\pi}{2}$.				
4	a)	2 log3 log2	(2)			
	,	Evaluate $\int \int e^{x+2y} dy dx$.	(-)			
	b)	Evaluate $\iint xv dA$ where R is the region bounded by the curves $v = r^2$ and	(3)			
		$\sum_{R} \frac{1}{R} \sum_{k=1}^{R} \frac{1}{2} \sum_{k=1}^{R$				
5	(a)	$x = y^2.$				
5	(a)	Find the divergence and curl of the vector $F(x, y, z) = yzi + xy^2 j + yz^2 k$.	(2)			
	(0)	Evaluate $\int_{C} (3x^2 + y^2) dx + 2xy dy$ along the circular arc C given by	(3)			
		$x = \cos t$, $y = \sin t$ for $0 \le t \le \frac{\pi}{2}$				
	(\mathbf{a})	$\frac{1}{2}$	(2)			
U	(a)	Use line integral to evaluate the area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.	(2)			
	(b)	Evaluate $\int_{C} (x^2 - 3y)dx + 3xdy$, where C is the circle $x^2 + y^2 = 4$.	(3)			
		PART B				
Module 1 Answer any two questions, each carries 5 marks						
7		That the convergence of divergence of the sector $\sum_{n=1}^{\infty} (n - n)^2$	(5)			
		Test the convergence of divergence of the series $\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^n$.				

Page 1 of 3

Α	A7001					
8	Test the absolute convergence of $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{(2k)!}{(3k-2)!}$.	(5)				
9	Find the Taylor series for $\frac{1}{1+x}$ at $x = 2$.	(5)				
Module 11						
10	Even the local linear approximation I to $f(r, y) = \log(ry)$ at $P(1, 2)$ and compare	(5)				
	the error in approximation f by L at Q(1.01, 2.01) with the distance between P and Q.	(5)				
11	Let $w = 4x^2 + 4y^2 + z^2$, $x = \rho \sin \phi \cos \theta$, $y = \rho \sin \phi \sin \theta$, $z = \rho \cos \phi$. Find	(5)				
	$\frac{\partial w}{\partial \rho}, \frac{\partial w}{\partial \phi} \text{ and } \frac{\partial w}{\partial \theta}.$					
12	Locate all relative extrema and saddle points of $f(x, y) = 4xy - x^4 - y^4$.	(5)				
	Module 1II					
	Answer any two questions, each carries 5 marks.					
13 -	Find the equation of the tangent plane and parametric equation for the normal line to the surface $x^2 + y^2 + z^2 = 25$ at the point (3,0, 4).	(5)				
14	A particle is moving along the curve $r(t) = (t^3 - 2t)i + (t^2 - 4)j$ where t denotes	(5)				
	the time. Find the scalar tangential and normal components of acceleration at $t = 1$. Also find the vector tangential and normal components of acceleration at $t = 1$.					
15	The graphs of $r_1(t) = t^2 i + tj + 3t^3 k$ and $r_2(t) = (t-1)i + \frac{1}{4}t^2 j + (5-t)k$ are	(5)				
	intersect at the point $P(1,1,3)$. Find, to the nearest degree, the acute angle between					
the tangent lines to the graphs of $r_1(t) \& r_2(t)$ at the point $P(1,1,3)$.						
	Module 1V					
	Answer any two questions, each carries5 marks.					
16	Change the order of integration and evaluate $\int_{0}^{1} \int_{4x}^{4} e^{-y^2} dy dx$.	(5)				
17	Use triple integral to find the volume bounded by the cylinder $x^2 + y^2 = 9$ and between the planes $z = 1$ and $x + z = 5$					
18	Find the area of the region enclosed between the parabola $y = \frac{x^2}{2}$ and the line					
	y=2x.					
	Module V					
	Answer any three questions, each carries5 marks.	(- :				
. 19	Determine whether $F(x, y) = (\cos y + y \cos x)i + (\sin x - x \sin y)j$ is a conservative vector field. If so find the potential function for it.	(5)				
20	Show that the integral $\int_{(1,1)}^{(3,3)} (e^x \log y - \frac{e^y}{x}) dx + (\frac{e^x}{y} - e^y \log x) dy$, where x and y	(5)				
21	are positive is independent of the path and find its value. Find the work done by the force field $F(x, y, z) = xyi + yzj + xzk$ on a particle	(5)				
	that moves along the curve $C: r(t) = ti + t^2 j + t^3 k (0 \le t \le 1)$.					

Α	A7001					
22	Let $\overline{r} = xi + yj + zk$ and $r = \overline{r} $, let f be a differentiable function of one variable, then show that $\nabla f(x) = \frac{f'(r)}{r}$	(5)				
23	Find $\nabla . (\nabla \times F)$ and $\nabla \times (\nabla \times F)$ where $F(x, y, z) = e^{xz}i + 4xe^{y}j - e^{yz}k$.	(5)				
	Module VI					
	Answer any three questions, each carries5 marks.					
24	Use Green's Theorem to evaluate $\int_C \log(1+y)dx - \frac{xy}{(1+y)}dy$, where C is the	(5)				
	triangle with vertices $(0,0)$, $(2,0)$ and $(0,4)$.					
25	Evaluate the surface integral $\iint_{\sigma} xzds$, where σ is the part of the plane $x + y + z = 1$	(5)				
	that lies in the first octant. Using Stoke's Theoremevaluate $\int_{C} F dr$ where $F(x, y, z) = xzi + 4x^2y^2j + yxk$, C					
26						
	is the rectangle $0 \le x \le 1, 0 \le y \le 3$ in the plane $z = y$.					
27	Using Divergence Theorem evaluate $\iint \overline{F} \cdot n ds$ where	(5)				
	$F(x, y, z) = x^{3}i + y^{3}j + z^{3}k$, σ is the surface of the cylindrical solid bounded by					
	$x^2 + y^2 = 4$, $z = 0$ and $z = 4$.					
28	Determine whether the vector fields are free of sources and sinks. If it is not, locate them	(5)				

(i) $(y+z)i - xz^{3}j + x^{2} \sin yk$ (ii) $xyi - 2xyj + y^{2}k$ ****

Page 3 of 3