C 30138

(**Pages : 3**)

SEVENTH SEMESTER B.TECH. (ENGINEERING) DEGREE EXAMINATION, NOVEMBER 2017

Electrical and Electronics Engineering

EE 14 702-MODERN CONTROL THEORY

Time : Three Hours

Maximum : 100 Marks

Nam

Reg.

Part A

Answer any eight questions. Each question carries 5 marks.

1. Find the transfer function for the system which is represented in state space as follows :

[X ₁ X ₂ X ₃]	=	0 0 -2	1 0 -4	0 1 -3	$\begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$	+	0 0 2	u
		Y = [1 0	0]	$\begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$	•		

- 2. Find $f(A) = A^{10}$ for $A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$.
- 3. Construct the state model for a system characterized by the differential equation :

$$\frac{d^3y}{dt^3} + 6\frac{d^2y}{dt^2} + 11\frac{dy}{dt} + 6y + u = 0.$$

- 4. What are singular points ? Explain the different singular points with respect to stability of a nonlinear system.
- 5. Explain the construction of a phase trajectory either by isocline method or by delta method.
- 6. Briefly explain the concept of equilibrium points and the stability definitions.
- 7. Investigate the stability of the non-linear system using direct method of Liapunov :

$$\dot{x}_1 = x_2 \dot{x}_2 = -x_1 - x_1^2 x_2.$$

Turn over

8. Examine the controllability and observability of the system given below :

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \mathbf{X} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$

 $y = \begin{bmatrix} 10 & 5 & 1 \end{bmatrix} x.$

- 9. Discuss in detail the design procedure of full order observer and reduced order observer with necessary equations.
- 10. Consider the following state space model:

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} x + \begin{bmatrix} 0 \\ 2 \end{bmatrix} u(t); y = \begin{bmatrix} 1 & 0 \end{bmatrix} x.$$

For the desired observed poles at -1 and -4, determine the observer gain matrix K using direct substitution method.

$$(8 \times 5 = 40 \text{ marks})$$

Part B

Answer all questions. Each question carries 15 marks.

1. (a) A feedback system is characterized by the closed loop transfer function :

$$\frac{C(s)}{U(s)} = \frac{10(s+4)}{s(s+1)(s+3)}.$$

Construct the canonical state model for this system and give the block diagram representation.

Or

(b) A linear time invariant system is described by the following state model :

$$\begin{bmatrix} \dot{X}_{1} \\ \dot{X}_{2} \\ \dot{X}_{3} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \begin{bmatrix} X_{1} \\ X_{2} \\ X_{3} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} u$$
$$Y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} X_{1} \\ X_{2} \\ X_{3} \end{bmatrix}.$$

Compute the state transition matrix e^{At} using similarity transformation method.

3

C 30138

(7 marks)

2. (a) (i) Explain the delta method of constructing phase trajectories.

(ii) Using isocline method, draw the phase trajectory for the system :

$$\frac{d^2x}{dt^2} + 0.6 \frac{dx}{dt} + x = 0 \text{ with } x = 1 \text{ and } \frac{dx}{dt} = 0 \text{ as initial condition.}$$

(8 marks)

Or

- (b) Determine the describing function of a combined dead zone and saturation type non-linearity.
- 3. (a) (i) Describe briefly about variable gradient method and Krasovskii's method of generating Liapunov functions.

(8 marks)

(ii) Consider the non-linear system described by the state equations given by :

$$x_1 = x_2$$

$$x_2 = -x_1 - b_1 x_2 - b_2 x_2^3; b_1, b_2 > 0.$$

Check the stability of the system.

Or

- (b) (i) State and explain the basic Liapunov's stability theorems.
 - (ii) Using direct method of Liapunov, determine the stability of the system given by :

$$\mathbf{x}(t) = \mathbf{A}\mathbf{x}(t)$$
 where $\mathbf{A} = \begin{bmatrix} -1 & -2 \\ 1 & -4 \end{bmatrix}$.

4. (a) A single input system is described by the following state equation :

X_1		-1	0	0]	X ₁		10	
Χ ₂	=	1	-2	0	X ₂	+	1	u.
Х́з		2	1	-3	X ₃		0	

Design a state feedback controller which will give closed loop poles at $-1 \pm j^2$, -6.

Or

(b) Consider the system described by the state model :

$$\dot{x} = Ax$$
 where $A = \begin{bmatrix} -1 & 1 \\ 1 & -2 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$
 $y = Cx$.

Design a full order state observer. The desired Eigen values for the observer matrix are. $\mu_1 = -5$ and $\mu_2 = -5$.

 $[4 \times 15 = 60 \text{ marks}]$

(7 marks)

(7 marks)

у:

(8 marks)