C 30072

(Pages : 2)

SEVENTH SEMESTER B.TECH. (ENGINEERING) DEGREE [2 EXAMINATION, NOVEMBER 2017

Civil Engineering

CE 14 702-DESIGN OF HYDRAULIC STRUCTURES

Time : Three Hours

Maximum : 100 Marks

Name

Reg. No.

0

Part A

Answer any **four** questions. Each question carries 5 marks.

- 1. How will you select the suitable site for a gravity dam?
- 2. Distinguish between modular and non-modular outlets.
- 3. Explain the causes for failure of the weirs founded on permeable soils.
- 4. Discuss the design criteria of Bligh's creep theory.
- 5. State the necessities of cross drainage works.

 $(4 \times 5 = 20 \text{ marks})$

Part B

Answer any **one** full question. Draw sketches wherever necessary. The question carries 15 marks.

- 6. (a) Explain the design procedure of an arch dam by thin cylinder theory. (7 marks)
 - (b) Describe the different types of spillways used in dams.

(8 marks)

n dams.

Or

7. (a) Design the practical profile of a gravity dam of stone masonry for the following data :

Ground level R.L. = 1130.50 m., R.L. of H.F.L. = 1155.50 m.,

Wave height = 1.0 m., Specific gravity of masonry = 2.50,

Permissible compressive stress for stone masonry = 125 ton/m.^2

'Assume suitable data wherever necessary.

(b) Discuss the main functions of galleries in dams.

(10 marks)

(5 marks)

 $[1 \times 15 = 15 \text{ marks}]$

Turn over

2

Part C

Answer any **one** full question. The question carries 65 marks.

8. A tank surplus has the following data :

Combined catchment : 36 sq.km., Intercepted catchment : 22 sq.km., F.T.L. = + 17.00 m., M.W.L. = + 17.75 m., Crest level of weir = + 17.00 m., Ground level at site = +16.00 m., T.B.L. = + 18.75 m., C = 10, c = 2.5 in Ryve's formula, Hard soil for foundation = + 14.50 m., Top width of bank = 3 m., Tank bund slopes : u/s = 1.5 : 1 and d/s = 2 : 1.

Assume suitable data found to be necessary.

Design the length of surplus weir, abutments, wing walls and return walls.

Draw the following with suitable scale :

- (i) Half plan at foundations and half plan at top clearly showing the bank connections.
- (ii) Draw a section across the body wall showing aprons, etc.

Or

9. A notch type of canal fall has the following data :---

Hydraulic particulars		U/S of drop	D/S of drop
Full supply discharge	•••	$4 \text{ m}^3/\text{sec.}$	$4 \text{ m}^3/\text{sec.}$
Bed width	•••	6 m.	6 m.
Bed level	•••	+ 10.00 m.	+ 8.00 m.
Full supply depth	•••	1.5 m.	1.5 m.
F.S.L.	· '	+ 11.50 m.	+ 9.50 m.
Top of bank 2 m. wide		at level + 12.50 m.	at level + 10.50 m.

Half supply depth 1 m., ground level at site of work is + 10.50, Good soil for foundation is available at + 8.50 m. Design the drop wall, cistern and notches.

Draw the following with suitable scale :

- (i) Draw a half plan at foundations and half plan at top of fall.
- (ii) Draw a cross-section across the body wall, cistern and aprons.

$(1 \times 65 = 65 \text{ marks})$