B4C082S

Reg. No.____

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FOURTH SEMESTER B.TECH DEGREE EXAMINATION, JULY 2017

Course Code: EE204

Course Name: DIGITAL ELECTRONICS AND LOGIC DESIGN (EE)

Max. Marks: 100

Duration: 3 Hours

Pages: 2

PART A

Answer all questions; each question carries 5 marks

- 1. Perform each of the following conversions:
 - a) $(473)_{10}$ in to BCD code
 - b) BAD in to ASCII
 - c) $(289)_{10}$ in to hexadecimal
 - d) (110011.110)₂ in to decimal
 - e) $(53)_8$ in to hexadecimal

2. Simplify the following Boolean expression $\overline{AB} + \overline{AC} + \overline{AB}\overline{C}$.

3. Design a half adder circuit and realize using NAND gates only.

4. Realise a JK flip flop using SR flip flop.

5. Draw the logical diagram of a 4 bit ring counter using D flip flop.

6. What are the asynchronous inputs of a flip flop and discuss its functions.

7. Compare static RAM and dynamic RAM.

8. Write the VHDL code for the implementation of a full adder circuit.

PART B

Answer any two questions; each question carries 10 marks

9. Perform arithmetic operation using 2's complement method.

a) -70 - 85	(5)
b) 130 – 65	(5)
10. Using a 4 variable K map, simplify,	
$F(A,B,C,D) = \sum m (1,4,9,10,11,12,14) + d (0,8,13)$	
· Realize the function using NAND gates only.	(10)

11. a) Describe the operation of a basic parity generating and checking logical unit. (5)

b) Compare the characteristics of TTL and CMOS logic families. (5)

Page 1 of 2

С

B4C082S

PART C

Answer any two questions; each question carries 10 marks

- 12. Design a MOD-12 asynchronous counter (ripple counter) using JK flip flop. Explain the working with truth table and timing diagram. (10)
- 13. a) Draw the block diagram of a 4 bit ALU, and explain it, showing its inputs and outputs. (5)

b) Design a BCD to decimal decoder. (5)

14. What are fast adders? Design a 4 bit, carry look ahead adder, showing the logical diagram. (10)

PART D

Answer any two questions; each question carries 10 marks

15.	Design a counter to obtain the count sequence 2, 4, 3, 6, 2, 4, 3, 6 using	JK flip
	flop.	(10)
16.	a) Compare the Moore and Mealy state machine models.	(5)
	b) Compare PAL and PLA.	(5)
17.	With a neat block schematic, describe the working of a successive approxi	mation

ADC and illustrate it with a suitable example. (10)
