E

Total Pages: 2

(4)

(5)

	I pear gages: 2					
Reg No	.: Name:	-				
	APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY	2				
	FOURTH SEMESTER B.TECH DEGREE EXAMINATION, JULY 2017	3				
	Course Code: CE208	-				
	Course Name: GEOTECHNICAL ENGINEERING I (CE)					
Max N	Marks: 100 Duration: 3 H	low				
	PART A					
	Answer any two full questions. Each carries 15 marks.					
1 a)	What are the major soil deposits of India?	(5)				
b)		(5)				
c)		(5)				
	content of 10 %. Determine the Void ratio, Degree of Saturation and Percentage air	20. 2				
	voids Also determine the water content at which the soil gets fully saturated without					
	any increase in volume					
2 a)	What is a gradation curve? Sketch the gradation curves for Well graded and Gap	(4)				
	graded soils?					
b)						
	put on the surface of still water tank 6 m deep. Calculate the time of settlement of					
	the coarsest and finest particles of the sample to the bottom of the tank. Specific					
	gravity of soil = 2.66, Viscosity of water = 0.008 poise.	(6)				
c)		(6)				
3 a)		(4)				
1-1	i) Activity ii) Thixotropy	(5)				
b)		(5)				
ره	using a Plasticity chart. The Atterberg limits of a soil sample are $LL=52$ %, $PL=33$ % and $SL=17$ %. If	(6)				
c)	the specimen of the soil shrinks from a volume of 11.5 cc at Liquid limit to 6.2 cc	(0)				
	when it is oven dried. Calculate: -					
	i) Shrinkage ratio ii) specific gravity of soil solids					
	PART B					
	Answer any two full questions. Each carries 15 marks.					
4 a)	State Darcy's law and explain the validity of the law	(4)				
b)		(5)				
	three horizontal layers. The first and second layer have same thickness of 0.6 m					
	each and third layer is 0.8 m thick. The coefficient of permeability of first, second					
•	and third layer are 2×10^{-4} cm/s, 2.5×10^{-5} cm/s and 1.2×10^{-4} cm/s respectively.					
c)	Explain Mohr Coulomb failure criteria. Also draw the failure envelope for: -	(6)				
	i) Pure sand ii) Pure clay					

B4E0544

b) What are the factors affecting Coefficient of Permeability?

a) What is UU and CD tests?

- c) In a deposit of sand 10 m thick, water table is 2m below ground surface. Above the water table, soil is saturated with capillary water. Saturated unit weight of sand is 21 kN/m³.Plot the variation of Total stresses, Neutral stresses and Effective stresses over the depth of 10m.
- 6 a) Explain the quick sand condition

(5)

b) The Triaxial tests conducted on four identical soil sample specimens gave the (10) following results.

Cell pressure in kN/m ²	100	150	200	250
Deviator stress in kN/m ²	300	420	515	607
Neutral stress in kN/m ²	6	12	14	16

Determine the shear parameters in terms of: -

i) Total stresses

ii) Effective stresses

PART C

Answer any two full questions. Each carries 20 marks.

7 a) Define

(5)

- i) Normally consolidated clay ii) Over consolidated clay
- b) A clay layer 4m thick is sandwiched between layer of sand at top and impermeable (5) strata at bottom. Calculate the time taken by clay layer to reach 40 % consolidation, if coefficient of consolidation is 2x 10⁻⁴ cm/s.
- c) Explain the Friction circle method for slope stability analysis.

(10)

8 a) What are the different types of slope failure?

(5)

b) What is meant by control of compaction

- (5)
- c) A saturated clay sample of height 25mm, cross sectional area 50 cm² was subjected (10) to a consolidation test and the results are as follows. Height of solids = 14.25mm. Final water content = 25%. Find the void ratio at various load increments by Height of solids method.

Pressure in kN/m ²	0	10	20	40	80	160	320	640	0
Dial reading	490	482	470	431	390	343	295	249	350

- 9 a) A clay stratum 2m thick is subjected to an overburden pressure of 150 kN/m². (5) Estimate the probable settlement of the clay layer if effective pressure at centre of clay layer is expected to increase to 345 kN/m². The slope of e- log p curve is 0.09. The initial void ratio is 1.12.
 - b) What are the uses of Stability number and Stability charts?

(5)

c) Explain about the standard proctor test.

(10)
