D	B3D048S GG. COLLEGE PARENT
Reg.	No. Name:
J	APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY. THIRD SEMESTER B.TECH DEGREE EXAMINATION JULY 2017
	Course Code: EE205
	Course Name: DC MACHINES AND TRANSFORMERS (EE)
	NO THURS
Max.	Marks: 100 Duration: 3 Hours
	PART A
1.	Answer all questions. Compare lap and wave windings used for DC machine armature (5)
2.	Draw the magnetization characteristic of self excited DC shunt generator and explain.
2	(5)
3.	
4.	Draw and explain the detailed phasor diagram of a practical transformer supplying
	lagging power factor load. (5)
5.	Define all-day efficiency of a transformer. What is done to improve the all-day
	efficiency of a distribution transformer? (5)
6.	List out and explain the necessary and desirable conditions for parallel operation of
	transformers. (5)
7.	Enumerate the purposes which dictate the use of tertiary winding in a three winding
	transformer. (5)
8.	Draw the diagram for V-V connection of transformers and explain the voltage and
	current relations of line and phase values. Derive the capacity ratio as a fraction of
	Δ - Δ capacity. (5)
	PART B
	Answer any 2 questions.
0	
9.	a. Derive the electro-dynamic equation of rotating electrical machines and explain th

9. a. Derive the electro-dynamic equation of rotating electrical machines and explain the principle of energy conversion. (5)
b. Draw the developed winding layout of a lap connected simplex double layer DC armature with 16 slots and 4 poles. Furnish the winding table and show connections to 4 equalizer rings. (5)
10. a. Derive the EMF equation of a DC generator, from first principles (5)
b. A shunt generator delivers 195 A at a terminal voltage of 250 V. The armature and shunt field resistances are 0.02 Ω and 50 Ω respectively. The iron and frictional losses

	are equal to 950 W. Find (i) emf generated (ii) Copper losses (iii) output of p	rimo
	mover (iv) commercial, mechanical and electrical efficiencies.	(5)
11.	. a. What is armature reaction and explain its effects? Derive expressions for o	cros
	magnetizing and demagnetizing ampere turns per pole	(5)
	b. A 4 pole, wave wound armature of a DC machine has 880 conductors and dela	iver
	120 A. The brushes are displaced through 3 angular degrees from the geomet	rica
	axis. Calculate (i) demagnetizing ampere turns per pole (ii) cross-magnetizing am	pere
	turns per pole and (iii) the additional field current for neutralizing the demagnetiza	ation
	if the field winding has 110 turns per pole.	(5)
	PART C	
	Answer any 2 questions.	
12.	. a. Draw and explain the electrical and mechanical characteristics of DC shunt mot	ors.
		(5)
	b. A 250 V DC shunt motor has an armature resistance of 0.5 Ω and a field resist	ance
	of 250 Ω . The motor draws 21 A when driving a constant torque load at 600	rpm
	What will be the new speed of the motor if an additional 250 Ω resistance is inse	ertec
	in the field circuit?	(5)
13.	. a. Enumerate the losses in a loaded transformer. Derive the condition for maximum	m
	efficiency in a transformer.	(5)
	b. A 200 / 2000 V transformer is fed from a 200 V supply. The total win	ding
	resistance and leakage reactance as referred to the LV side is 0.15 Ω and 0.	.6 Ω
	respectively. The resistance representing core loss is 450 Ω and magnetic	zing
	reactance is 250 Ω . A load of impedance (600+j400) Ω is connected across	the
	secondary terminals. Calculate (i) input current (ii) secondary terminal voltage	and
	(iii) primary power factor.	(5)
14.	. a. With neat diagrams, explain the speed control methods in separately excited DC	
	motors.	(5)

PART D

(5)

b. The efficiency of a 200 KVA, single phase transformer is 98.75% when delivering full load at 0.8 pf and 99% at 80% of full load at 0.9 pf. Calculate (i) the iron loss and

Answer any 2 questions.

(ii) the full load copper loss.

15.	15. a. With a neat diagram, describe the Sumpner's method of testing transformers. How		
	can the voltage regulation be predetermined using this test?	(5)	
	b. A 3 ϕ step down transformer is connected to 6.6 kV supply mains and takes 80	A.	
	Calculate its secondary line voltage and line current for the following connection	s if	
	the ratio of turns per phase is 16 (i) Y-Y (ii) Y- Δ (iii) Δ -Y (iv) Δ - Δ .	(5)	
16.	a. Derive expression for saving in copper effected by using an autotransformer in	stead	
	of a two winding transformer.	(5)	
	b. A load of 6 kW is supplied by an autotransformer at 120 V and upf. If the prim	nary	
	voltage is 240 V, determine (i) transformation ratio (ii) secondary current (iii) pri	mary	
	current (iv) number of secondary turns if the total number of turns is 280 (v) pow	er	
	transformed and (vi) power conducted directly from supply mains to load.	(5)	
17.	17. a. Explain with neat circuit diagram and phasors, how a 2-phase supply can be		
	obtained from a 3-phase supply.	(5)	
	b. Explain the vector groupings Yy0, Dd0, Yd1, Dy1, Yd11 and Dy11 in three phase		
	transformers.	(5)	
