APJ ABDULKALAM TECHNOLOGICAL UNIVERSITY 08 PALAKKAD CLUSTER

OD	. Code	. 7	A 1"	7 1
V. I	. Coue	. 41	7-1	-1

(Pages: 3)

Name

Reg. No:

SECOND SEMESTER M.TECH. DEGREE EXAMINATION, April/May 2017

Branch: Computer Science

Specialization: Computer Science and Engg.

08CS 6012 ADVANCED COMPILER DESIGN

(Common to Computer Science and Engineering)

Time:3 hours

Max.marks: 60

Answer all six questions.

Modules 1 to 6: Part 'a' of each question is compulsory and answer either part 'b' or part 'c' of each question.

Q.no.	Module 1	Marks
1.a	Using SDD for type declarations, draw the dependency graph for the statement $int \ a,b,c$.	
	Answer b or c	
b	Remove left recursion from the following SDT's.	
	i. $E \rightarrow E_1 + T \{ print('+'); \}$ $E \rightarrow T$	2
8.7	ii. $T \rightarrow T_1 * F \{T.val = T_1.val * F.val\}$	
*	$T \rightarrow F$ {T.val = F.val} $F \rightarrow digit$ {F.val = digit.lexval}	4
c	What changes are to be made to the parser stack to enable implementation of L-attributed SDD during LL parsing? Explain using an example.	6
Q.no.	Module 2	Marks
2.a	Construct the DAG for the expression $((x + y) - ((x + y) * (x - y))) + ((x + y) * (x - y))$	3
	Answer b or c	
b	i. Write down the SDD for translation of array references.	3
	 Using the SDD, translate and also draw the annotated parse tree for the following statement 	3
	x = a[i][j] + b[i][j]	
c	i. Justify the use of <i>fall through</i> technique in the translation of boolean expressions.	3
	ii. Using this technique translate the following boolean statement. if $(a = b \&\& c = d \parallel e = f) x = 1$	3

Q.no.	Module 3	Marks	
3.a	What are the various fields in an activation record? Mention their use.	3	
	Answer b or c		
b	Differentiate between the use of access links and displays for accessing nonlocal data in nested procedures.		
c	Discuss the Cheney's copying collector algorithm in detail.	6	
Q.no.	Module 4	Marks	
4.a	Draw the DAG for the basic block which consists of the following statements.	3	
	a = b + c	3	
	b = b - d		
	c = c + d		
	e = b + c		
	Answer b or c		
b	i. What are basic blocks?	1	
	ii. Write the algorithm to partition three-address instructions into basic	2	
	blocks.		
	iii. Draw the flow graph for the following	3	
	(1) i = 0		
	(2) $n = 10$		
	(3) $t_1 = n - 1$		
	(4) if $i > t_1$ goto (12)		
	(5) $t_2 = i * i$		
	(6) $t_3 = 4 * i$		
	$(7) \mathbf{t_4} = \mathbf{a}[\mathbf{t_3}]$		
	(8) $t_4 = t_2$		
	(9) $t_5 = i + 1$		
	(10) i = t5		
	(11) goto (3)		
	(12) return		
c	Compute Ershov numbers for the expression $a/(b+c) - d^*(e+f)$ and generate	6	
	optimal code using		
	i. , two registersii. three registers		
	n. tince registers		
Q.no.	Module 5	Marks	
5.a	i. Define available expression.	1	
	ii. Write down the iterative algorithm to compute available expressions.	3	
	available explessions.	-	

Answer b or c

Explain the principal sources of optimization using the code for quick sort fragment as an example. Differentiate region-based analysis from iterative data-flow i. 2 analysis. ii. Discuss the algorithm for performing a region-based analysis. 6 Q.no. Module 6 Marks 6.a Draw the data dependence graph for the following code fragments. Assume a machine with one ALU and one MEM resource. Assume that all operations require one clock, except for the LD which requires two. However, a ST on the same memory location can commence one clock after a LD on that location commences. i. ii. 2+2 1) LD R1,a 1) LD R1,a 2) LD R2,b 2) LD R2,b 3) SUB R3, R1, R2 3) SUB R3,R1,R2 4) ADD R2, R1, R2 4) ADD R4,R1,R2 5) ST a, R3 5) ST a,R3 6) ST b, R2 ST b,R4 Answer b or c b How does a basic block scheduling differ from global code 2 scheduling? ii. Discuss in detail the scheduling of basic blocks Elaborate the various constraints that a compiler encounters during code scheduling.