

APJ ABDULKALAM TECHNOLOGICAL UNIVERSITY 08 PALAKKAD CLUSTER

6222 May17 1

(Pages: 2)

Reg. No:....

SECOND SEMESTER M.TECH. DEGREE EXAMINATION MAY 2017

Branch: Electrical & Electronics Engineering Specialization: Power Electronics 08EE6222 SWITCHED MODE POWER CONVERTERS

Time:3 hours

Max. marks: 60

Answer all six questions.

Modules 1 to 6: Part 'a' of each question is compulsory and answer either part 'b' or part 'c' of each question.

Module 1 Marks

1.a

Q.no.

What is the principle of voltage control in the basic DC-DC switching converters?

- **b** In a step down power supply, the output is to be maintained constant at 5 V. **6** Calculate the minimum inductance required to keep the conduction mode continuous, if the input is varying between 10 40 V. The output $P_0 >= 5$ W, and switching frequency is 50 kHz. Derive any formula you may use.
- С

Explain the principle of operation of a push pull converter with relevant 6 waveforms. Derive an expression for the duty ratio. What are the merits and demerits of a push pull configuration?

Q.no.	Module 2
2.a	Compare isolated and non isolated dc-dc converters
b	With circuit diagram and waveforms, explain the principle of operation of a full bridge converter. Derive the expression for duty ratio.

c With circuit diagram and waveforms, explain the principle of operation of a 6 flyback converter. Derive expressions for duty ratio, peak current through the switch and peak voltage across the switch

Marks

3

6

Q.no.	Module 3	Marks	
3.a	What are the conditions for stability of a feedback loop? What is K factor?	3	
b	How will you shape the error amplifier gain versus frequency characteristics?	6	
c	What are the advantages of current mode control? Why slope compensation is required in the current mode control of converters?	6	
Q.no.	Module 4	Marks	
4.a	Obtain the DC model of a boost converter operating inn continuous conduction mode.	3	
b	Obtain the transfer function $\frac{\widehat{V0}}{\widehat{a}}(S)$ of a forward converter operating in	6	
	continuous conduction mode using state space averaging . Assume the turns ratio as 1:1.		
c	Obtain the basic Ac model of a flyback converter. Assume the turns ratio as $1 : n$ and on state resistance as R_{on} .	6	
Q.no.	Module 5	Marks	
Q.no. 5.a	Module 5 Compare state space averaging and circuit averaging methods of modelling of dc-dc converters.		
	Compare state space averaging and circuit averaging methods of		
5.a	Compare state space averaging and circuit averaging methods of modelling of dc-dc converters. Obtain the state space averaged model of a non ideal fly back	4	
5.a b	Compare state space averaging and circuit averaging methods of modelling of dc-dc converters. Obtain the state space averaged model of a non ideal fly back converter.	4 8	Marks
5.a b c	Compare state space averaging and circuit averaging methods of modelling of dc-dc converters. Obtain the state space averaged model of a non ideal fly back converter. Obtain the circuit averaged model of a boost converter.	4 8	Marks
5.a b c Q.no.	Compare state space averaging and circuit averaging methods of modelling of dc-dc converters. Obtain the state space averaged model of a non ideal fly back converter. Obtain the circuit averaged model of a boost converter. Module 6	4 8 8	

-

2

2/5