A B3A005

Reg. No.

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

MA 201: LINEAR ALGEBRA AND COMPLEX ANALYSIS

Max. Marks: 100

Duration: 3 Hours

Pages:2

PART A

Answer any 2 questions

1. a. Check whether the following functions are analytic or not. Justify your answer.

i)	$f(z) = z + \overline{z}$			(4)
ii)	$f(z) = \left z\right ^2$		×	(4)

b. Show that $f(z) = \sin z$ is analytic for all z. Find f'(z) (7)

2. a. Show that $v = 3x^2y - y^3$ is harmonic and find the corresponding analytic function

$$f(z) = u(x, y) + iv(x, y)$$
(8)

b. Find the image of 0 < x < 1, $\frac{1}{2} < y < 1$ under the mapping $w = e^{z}$ (7)

a. Find the linear fractional transformation that carries z₁ = -2, z₂ = 0 and z₃ = 2 on to the points w₁ = ∞, w₂ = 1/4 and w₃ = 3/8. Hence find the image of x-axis.(7)
b. Find the image of the rectangular region -π ≤ x ≤ π, a ≤ y < b under the mapping w = sin z (8)

PART B

Answer any 2 questions

4. a. Evaluate $\int_C |z| dz$ where

- i) C is the line segment joining -i and i (3)
- ii) C is the unit circle in the left of half plane (4)

b. Verify Cauchy's integral theorem for z^2 taken over the boundary of the rectangle with vertices -1, 1, 1+i, -1+i in the counter clockwise sense. (8)

5. a. Find the Laurent's series expansion of $f(z) = \frac{1}{1-z^2}$ which is convergent in

i)
$$|z - 1| < 2$$
 (4)

ii)
$$|z - 1| > 2$$
 (4)

b. Determine the nature and type of singularities of

i)
$$\frac{e^{-z^2}}{z^2}$$
 (3)

Page 1 of 2

A **B3A005**

ii)
$$z \sin\left(\frac{1}{z}\right)$$
, (4)

6. a. Use residue theorem to evaluate
$$\int_{C} \frac{30z^2 - 23z + 5}{(2z-1)^2(3z-1)} dz$$
 where C is $|z| = 1$ (7)

b. Evaluate
$$\int_{0}^{\infty} \frac{1}{(1+x^2)^2} dx$$
 using residue theorem. (8)

PART C

Answer any 2 questions

7. a. Solve the following by Gauss elimination

$$y + z - 2w = 0$$
, $2x - 3y - 3z + 6w = 2$, $4x + y + z - 2w = 4$ (6)

b. Reduce to Echelon form and hence find the rank of the matrix

c. Find a basis for the null space of
$$\begin{bmatrix} 2 & -2 & 0 \\ 0 & 4 & 8 \\ 2 & 0 & 4 \end{bmatrix}$$
 (8)

a. i) Are the vectors (3 -1 4), (6 7 5) and (9 6 9) linearly dependent or independent? Justify your answer. (5)

ii) Is all vectors (x, y, z) in \mathbb{R}^3 with y - x + 4z = 0 form a vector space over the field of real numbers? Give reasons for your answer. (5)

b. i) Find a matrix C such that $Q = x^T C x$ where

$$Q = -3x_1^2 + 4x_1x_2 - x_2^2 + 2x_1x_3 - 5x_3^2$$
⁽⁴⁾

ii) Obtain the matrix of transformation

 $y_1 = \cos \theta x_1 - \sin \theta x_2, \quad y_2 = \sin \theta x_1 + \cos \theta x_2$

Prove that it is orthogonal. Obtain the inverse transformation.

a. Find the eigenvalues, eigenvectors and bases and dimensions for each Eigen space of

$$A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$$
(10)

b. Find out what type of conic section, the quadratic form $17x_1^2 - 30x_1x_2 + 17x_2^2 = 128$ and transform it to principal axes. (10)

Page 2 of 2

Pages:2

8.

9.

(6)