A **B1A003**

Reg. No:....

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSIT

FIRST SEMESTER B. TECH DEGREE EXAMINATION, FEBRUARY 20

MA101: CALCULUS

Max. Marks: 100

Duration: 3 Hours

Name

PART A

(Answer All Questions and each carries 5 marks)

7-

1.	a) Test the convergence of $\sum_{k=1}^{\infty} \frac{99^k}{k!}$	(2)
	b) Test the convergence of $\sum_{k=1}^{\infty} \frac{1}{3^{k}+1}$.	(3)
2.	a) Find the slope of the sphere $x^2+y^2+z^2=1$ in the y- direction at $(\frac{2}{3}, \frac{1}{3}, \frac{-2}{3})$.	(2)
	b) Find the critical points of the function $f(x,y) = 2xy-x^3-y^3$.	(3)
3.	a) Find the velocity at time $t = \pi$ of a particle moving along the curve	
	$\vec{r}(t) = e^t \operatorname{sint} i + e^t \operatorname{cost} j + t k$.	(2)
	b) Find the directional derivative of $f(x,y) = xe^{y}-ye^{x}$ at the point P(0,0) in	the
	direction of $5i - 2j$.	(3)
4.	a) Change the order of integration in $\int_0^1 \int_{y^2}^{\sqrt{2-y^2}} f(x, y) dx dy$.	(3)
	b) Find the area of the region enclosed by $y=x^2$ and $y=x$.	(2)
5.	a) Find the divergence of the vector field $f(x,y,z) = x^2y i + 2y^3z j + 3z k$.	(2)
	b) Find the work done by $\overrightarrow{F} = xy i + x^3 j$ on a particle that moves along the	ie
	curve $y^2 = x$ from (0,0) to (0,1).	(3)
6.	a) Using Green's theorem to evaluate $\int_C 2xy dx + (x^2 + x) dy$ where $\int_C 2xy dx + (x^2 + x) dy$	nere C is the
	triangle with vertices $(0,0)$, $(1,0)$ and $(1,1)$.	(2)
	b) Use Stoke's theorem to evaluate $\int_{C} \vec{F} \cdot dr$ where $\vec{F} = (x-2y)i + (y-z)j + (z-x)k$ as	
	C is the circle $x^2+y^2 = a^2$ in the xy plane with counter clockwise orient	ation

looking down the positive z- axis. (3)

Page 1 of 3

B1A003

A

Pages:3 (2016 ADMISSIONS)

PART B

MODULE I (Answer Any Two Questions)

7. a) Test the convergence of the following series

i)
$$\sum_{k=1}^{\infty} \frac{(k+4)!}{4!k! 4^k}$$
 ii) $\sum_{k=2}^{\infty} \left(\frac{4k-5}{2k+1}\right)^k$

8. Use the alternating series test to show that the series $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{(k+3)}{k(k+1)}$ converge.

(5)

9. Find the Taylor's series of $f(x) = x \sin x$ about the point $x = \frac{\pi}{2}$. (5)

MODULE II (Answer Any Two Questions)

10. Find the local linear approximation L to f(x,y) = ln (xy) at P(1,2) and compare the error in approximating f by L at Q(1.01, 2.01) with the distance between P and Q. (5)

11. Show that the function $f(x,y) = 2 \tan^{-1} (y/x)$ satisfies the Laplace's equation

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0.$$
(5)

12. Find the relative minima of $f(x,y) = 3x^2-2xy+y^2-8y$.

MODULE III (Answer Any Two Questions)

13. Find the unit tangent vector and unit normal vector to $\vec{r} = 4 \cos ti + 4 \sin tj + tk$ at $t = \frac{\pi}{2}$. (5)

14. Suppose a particle moves through 3- space so that its position vector at time t is

 $\vec{r} = t i + t^2 j + t^3 k$. Find the scalar tangential component of acceleration at the time t=1.

- 15. Given that the directional derivative of f(x,y,z) at (3,-2, 1) in the direction of 2i j 2k
 - is -5 and that $\|\nabla f(3, -2, 1)\| = 5$. Find $\nabla f(3, -2, 1)$. (5)

MODULE IV (Answer Any Two Questions)

- 16. Evaluate the integral $\int_0^4 \int_{\sqrt{y}}^2 e^{x^3} dx dy$ by reversing the order of integration. (5) 17. Evaluate $\int_0^1 \int_0^{y^2} \int_{-1}^z z \, dx \, dy$. (5)
- 18. Find the volume of the solid in the first octant bounded by the co-ordinate planes and the plane x+2y+z = 6. (5)

Page 2 of 3

(5)

(5)

(5)

A B1A003

MODULE V (Answer Any Three Questions)

Pages:3

DUCATIO

19. Let $\vec{r} = xi + yj + zk$ and let $r = ||\vec{r}||$ and f be a differentiable function of one variable

show that $\nabla f(r) = \frac{f'(r)}{r} \vec{r}$.

- 20. Evaluate the line integral $\int_C \left[-y \, dx + x \, dy\right]$ along $y^2 = 3x$ from (3,3) to (0,0) HURU
- 21. Show that $\vec{F}(x,y) = (\cos y + y \cos x) i + (\sin x x \sin y) j$ is a conservative vector field. Hence find a potential function for it. (5)
- 22. Show that the integral $\int_{C} (3 x^2 e^y dx + x^3 e^y dy)$ is independent of the path and hence evaluate the integral from (0,0) to (3,2). (5)

23. Find the work done by the force field $\overrightarrow{F} = xy i + yz j + xz k$ on a particle that moves along the curve C: $\overrightarrow{r}(t) = t i + t^2 j + t^3 k$ where $0 \le t \le 1$. (5)

MODULE VI (Answer Any Three Questions)

- 24. Use Green's theorem to evaluate the integral $\int_c (x \cos y \, dx y \sin x \, dy)$ where C is the square with vertices (0,0), (π ,0), (π , π) and (0, π). (5)
- 25. Evaluate the surface integral $\int_{\sigma} \int z^2 ds$ where σ is the portion of the cone $z = \sqrt{x^2 + y^2}$ between the planes z = 1 and z = 3. (5)
- 26. Use divergence theorem to find the outward flux of the vector field $\vec{F} = 2x \ i + 3y \ j + z^2 \ k$ across the unit cube x = 0, x = 1,y=0, y = 1, z = 0 and z = 1. (5)

27. Use Stoke's theorem to evaluate the integral $\int_C \vec{F} \cdot d\vec{r}$ where $\vec{F} = (x-y)i + (y-z)j + (z-x)k$ and C is the boundary of the portion of the plane x+y+z = 1 in the first octant. (5)

28. Use Stoke's theorem to evaluate the integral $\int_C \vec{F} \cdot d\vec{r}$ where $\vec{F} = 2z \ i + 3x \ j + 5y \ k$ and C is the boundary of the paraboloid $x^2+y^2+z = 4$ for which $z \ge 0$ and C is positively oriented. (5)

Page 3 of 3