Total pages:2

Reg. N	To Name:	1 3 6	2
	APJ ABDUL KALAM TECHNOLOGICAL UNIVERSI	TY	
	THIRD SEMESTER B.TECH DEGREE EXAMINATION, JANUA	ARY 2017	UTHU
	ME205: THERMODYNAMICS (AN, MA, ME, MP)		
Max	x. Marks: 100 Du	uration: 3 Hou	rs
	PART A (Answer any THREE questions)		
1.	a) Explain thermodynamic equilibrium .		(3)
	b) What is quasi-static process? What is its characteristic feature?		(3)
	c) What is the concept of continuum? How will you define density this concept?	and pressure t	using (4)
2.	Write short notes on		
	a) Different forms of energy.b) System, boundary and surroundings.c) Point and path functions.		(3) (4) (3)
3.	a) Define specific heat and derive it for constant pressure and constant	ant volume.	(4)
	b) A turbo compressor delivers 2.33 m ³ /s at 0.276 MPa, 43°C which pressure to 430°C and finally expanded in a turbine which delivers the expansion, there is a heat transfer of 0.09 MJ/s to the surround turbine exhaust temperature if changes in kinetic and potential energy	s 1860 kW. Du ings. Calculat	uring te the
4.	a) Calculate the internal energy and enthalpy of 1kg of air occupying	g 0.03m ³ at 31	MPa. (4)
	b) Explain Joule's experiment with neat sketches and state first law.		(6)
	PART B (Answer any THREE questions)		
5.	a) State and prove Clausius' theorem b) A fluid undergoes a reversible adiabatic compression from 0.05m^3 according to the law, $\text{pv}^{1.3} = \text{constant}$. Determine the chinternal energy and entropy, and the heat transfer and work to process.	nange in enth	alpy,
6.	a) Establish the Inequality of Clausius?b) Explain entropy principle and its applications?		(5) (5)
7.	a) What is the critical state? Draw the phase equilibrium diagram for a substance which shrinks in volume on melting.	on p-v coordi	nates (4)

D B3D086 Total pages:2

	·	
	b) Steam initially at 0.3 MPa, 250°C is cooled at constant volume. (a) At	what
	temperature will the steam become saturated vapour? (b) What is quality at 80°C	? (c)
	What is the heat transferred per kg of steam in cooling from 250°C to 80°C?	(6)
8.	a) What is exergy, dead state and triple point?	(4)
	b) A rigid vessel contains 1 kg of a mixture of saturated water and saturated steam	at a
	pressure of 0.15 MPa. When the mixture is heated, the state passes through the cri	tical
	point.	
	Determine	
	(i) The volume of the vessel.	
	(ii) The mass of liquid and of vapour in the vessel initially.	
	(iii) The temperature of the mixture when the pressure has risen to 3 MPa.	
	(iv) The heat transfer required to produce the final state.	(6)
	PART C	
	(Answer any FOUR questions)	
9.	a) Derive the equations used for computing the entropy change of an ideal gas. b) Two tanks are connected by a valve. One tank contains 2 kg of CO ₂ gas at and 0.2 bar. The other tank holds 8 kg of the same gas at 27°C and 1.2 bar. The vis opened and the gases are allowed to mix while receiving energy by heat transfrom the surroundings. The final equilibrium temperature is 42°C. Determine the equilibrium pressure and heat transfer for the process.	alve nsfer
10.	a) Explain equation of state and law of corresponding state.	(4)
	b) Derive law of corresponding state from vanderwaals equation.	(6)
11.	a) State and explain Amagat's law of partial volumes of a gas mixture. b) A mass of 0.25 kg of an ideal gas has a pressure of 300 kPa, a temperature of 8 and a volume of 0.07 m ³ . The gas undergoes an irreversible adiabatic process final pressure of 300 kPa and final volume of 0.10m^3 , during which work done or is 25 kJ. Evaluate the c_p and c_v of the gas and the increase in entropy of the gas.	to a

12. Explain Joule-Thomson coefficient and Inversion curve. (10)

13. a) What is Joule - Kelvin effect? What is inversion temperature? (5)b) Explain how enthalpy change and entropy change of a gas are estimated from an equation of state. (5)

14. a) Derive Clausius clapeyron equation.
b) A certain gas has Pc = 0.913 and Vc = 0.653 kJ/kg K. Find the molecular weight and the gas constant R of the gas?
(6)