B1A003

A

14/12/16

Reg. No.

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSIT

Course Code: MA201

Course Name: LINEAR ALGEBRA AND COMPLEX ANALYSIS

Max. Marks: 100

Duration:3. Hours

Total No. of page

PART A

(Answer any *two* questions)

1.a	Show that $u = y^3 - 3x^2y$ is harmonic and hence find its harmonic conjugate.	(8)
b	Find the image of $\left z - \frac{1}{2}\right \le \frac{1}{2}$ under the transformation $= \frac{1}{z}$. Also find the fixed per	oints
	of the transformation $w = \frac{1}{z}$ (7)	
2.a	Define an analytic function and prove that an analytic function of constant modulus is	
	constant.	(8)
b	Find the linear fractional transformation that maps $z_1 = 0, z_2 = 1, z_3 = \infty$ onto	
	$w_1 = -1, w_2 = -i, w_3 = 1$ respectively.	(7)
3.a	Show that $f(z) = e^{-x} cosy - ie^{-x} siny$ is differentiable everywhere. F	ind
	its derivative.	(8)
b	Find the image of the lines $x = c$ and $y = k$, where $c\&k$ are constants, under the	
	transformation $w = sinz$.	(7)
PART B		
(Answer any <u>two</u> questions)		
4.a	Evaluate $\int_C Re(z) dz$ where C is a straight line from 0 to $1 + 2i$.	(7)
b	Show that $\int_0^\infty \frac{dx}{1+x^4} = \frac{\pi}{2\sqrt{2}}$	(8)
5.a	Integrate $\frac{z^2}{z^2-1}$ counterclockwise around the circle $ z-1-i = \frac{\pi}{2}$ by Cauchy's	
	Integral Formula.	(7)
b	Evaluate $\int_C \frac{z-23}{z^2-4z-5} dz$ where C is $ z-2-i = 3.5$ by Cauchy's Residue The	orem
		(8)
6.a	If $f(z) = \frac{1}{z^2}$ find the Taylor series that converges in $ z - i < R$ and the Laurent's	5
	series that converges in $ z - i > R$.	(8)
b	Define three types of isolated singularities with an example for each.	(7)

B1A003

Total No. of pages:2

PART C

(Answer any *two* questions)

7.a Solve by Gauss Elimination:

 $x_{1} - x_{2} + x_{3} = 0,$ $-x_{1} + x_{2} - x_{3} = 0,$ $10 \ x_{2} + 25 \ x_{3} = 90,$ $20 \ x_{1} + 10 \ x_{2} = 80.$ (5)

b Find the rank. Also find a basis for the row space and column space for

 $\begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & -4 \\ 0 & 4 & 0 \end{bmatrix}$ (5)

С

Find out what type of conic section the quadratic form $Q = 17 \ x^2 - 30 \ xy + 17 \ y^2 = 128$ represents and transform it to the principal axes. (10) Find whether the vector $\begin{bmatrix} 1 & 2 & 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & -12 & -2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & -2 \end{bmatrix}$

8.a Find whether the vectors [1 2-1 3], [2 -13 2] and [-1 8-9 5] are linearly dependent. (5)

b Show that the matrix
$$A = \begin{bmatrix} 1 & 2 \\ 2 & -2 \end{bmatrix}$$
 is symmetric. Find the spectrum. (5)

c Diagonalise
$$A = \begin{bmatrix} 0 & -0 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$
 (10)

9. a. Determine whether the matrix
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/\sqrt{2} & -1/\sqrt{2} \\ 0 & 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$
 is orthogonal? (5)

- b. Find the Eigen values and Eigen vectors of $\begin{bmatrix} 1 & 1 & 2 \\ -1 & 2 & 1 \\ 0 & 1 & 3 \end{bmatrix}$ (5)
- c. Define a Vector Space with an example. (10)

Page 2 of 2