B

B3B007

Total Pages:4

Reg.	No:	

Name:

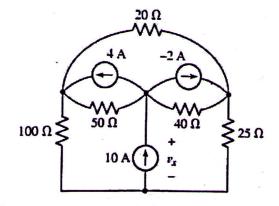
APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

THIRD SEMESTER B.TECH DEGREE EXAMINATION, JANUARY 2017

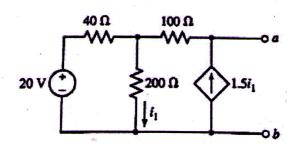
Course Code: EC201

Course Name: NETWORK THEORY (AE, EC)

Max. Marks: 100


Duration: 3 Hours

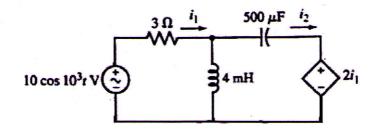
PART A


Question No. 1 is compulsory. Answer Question 2 or 3

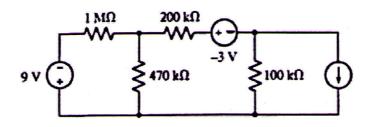
1. a. Use nodal analysis to find v_x in the circuit.

(6)

b. Find the Thevenin equivalent of the network shown in figure. What power would be delivered to a load of 100 ohms at a and b? (6)

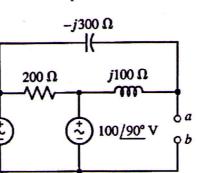


c. State and prove maximum power transfer theorem.


(3)

2. a. Obtain the expressions for the time-domain currents i_1 and i_2 in the circuit

(8)



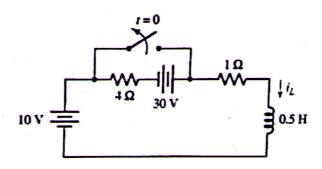
b. Explain source transformations and use it to determine the power dissipated by $1M\Omega$ resistance. (7)

1. OR

3. a. Find the Thevenin equivalent circuit with respect to terminals a and b

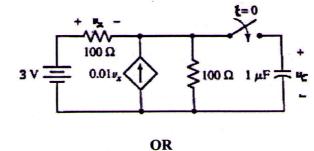
b. State and prove time differentiation and time integration theorems in Laplace Transform

(6)


(9)

PART B

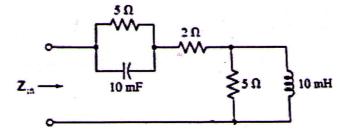
Question No. 4 is compulsory. Answer Question 5 or 6


- 4. a. Derive transient current and voltage responses of sinusoidal driven RL and RC circuits. (10)
 - b. Explain how to determine the time domain behaviour from the pole zero plot. (5)
- 5. a. Find the current $i_L(t)$ for all t after the switch opens. (8)

Total Pages:4

b. Find $v_C(t)$ for t>0 in the circuit.

(7)


6. What are the restrictions on pole and zero locations for transfer functions and driving-point functions. (15)

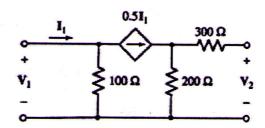
PART C

Question No. 7 is compulsory. Answer Question 8 or 9

- 7. a. Explain the series and parallel connection of two port networks. (8)
 - b. Derive the interrelationship between transmission and hybrid two port network parameters.
 - (6)
 - c. For the network shown in figure find the resonant frequency.

(6)

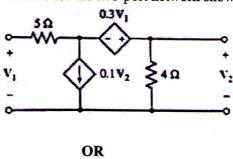
8. a. Find yparameters for the two-port network shown in figure.

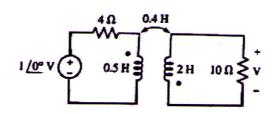

(6)

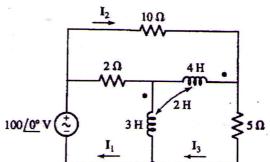
(7)


(7)

(4)


(10)


b. Calculate h parameters for the two-port network shown in figure.


c. Calculate transmission parameters for the two-port network shown in figure.

9. a. Find V in the circuit.

b. Find the time domain values of currents marked in the circuit.

c. Explain the following terms

- (i) Bandwidth
- (ii) Q-factor
- (iii) Selectivity

(6)