A B1A004

Reg. No.:....

Name.....

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIRST SEMESTER B.TECH DEGREE EXAMINATION, DEC 2016 (2016 ADMISSION)

Course Code: MA 101 Course Name: CALCULUS

Max. Marks: 100

4

5

Duration: 3 Hours

PART A

Answer ALL questions $(x) = k^{k+2}$

1	(a)	Determine whether the series	$\sum_{k=1}^{\infty} \left(\frac{3}{4}\right)$	converges	and if so, find its	(2)
		sum.				

(b)	Find the Maclaurin series for the function xe^x	(3)
	$\partial^2 z$	

2 (a) If
$$= x^{y}$$
, then find $\frac{\partial z}{\partial x \partial y}$ (2)

- (b) Compute the differential dz of the function $z = tan^{-1}(xy)$. (3)
- 3 (a) Find the domain of $r(t) = \langle \sqrt{5t+1}, t^2 \rangle, t_0 = 1$ and $r(t_0)$ (2)
 - (b) Find the directional derivative of $f(x,y) = e^{2xy}$ at P(5,0), in the (3) direction of $u = -\frac{3}{5}i + \frac{4}{5}j$

(a) Evaluate
$$\int_0^1 \int_0^1 \frac{dxdy}{\sqrt{1-x^2}\sqrt{1-y^2}}$$
 (2)

- (b) Use double integration to find the area of the plane region enclosed by the (3) given curves $y = \sin x$ and $y = \cos x$ for $0 \le x \le \frac{\pi}{4}$
- (a) Confirm that $\varphi(x, y, z) = x^2 3y^2 + 4z^3$ is a potential function for (2) $F(x, y, z) = 2xi - 6yj + 12 z^2 k.$
 - (b) Evaluate $\int F dr$ where F(x, y) = sinx i + cosx j where C is the curve (3) $r(t) = \pi i + tj, \ 0 \le t \le 2$
- 6 (a) Using Green's theorem evaluate $\oint y dx + x dy$, where C is the unit (2) circle oriented counter clockwise.
 - (b) If σ is any closed surface enclosing a volume V and = 2xi + 2yj + (3)3zk, Using Divergence theorem show that $\int_{\sigma} \int F \cdot n \, dS = 7V$

Page 1 of 3

PART B

(Each question carries 5 Marks) Answer any TWO questions

Test the nature of the series $\sum_{k=1}^{\infty} \frac{4k^3 - 6k + 5}{8k^7 + k - 8}$ Check whether the series $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{k^k}{k!}$ is absolutely convergent or not.

Find the radius of convergence and interval of convergence of the series $\sum_{k=1}^{\infty} \frac{(x-5)^k}{5^k}$

Answer any TWO questions

10 If
$$u = f(y - z, z - x, x - y)$$
, prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$

A function f(x, y) = x² + y²; is given with a local linear approximation L(x, y) = 2x + 4y - 5 to f(x, y) at a point P. Determine the point P.
Find the absolute extrema of the function f(x, y) = xy - 4x on R where R is the triangular region with vertices (0,0) (0,4) and (4,0).

Answer any TWO questions

13 Evaluate the definite integral $\int_0^1 (e^{2t}i + e^{-t}j + 2\sqrt{t}k)dt$.

14 Find the velocity, acceleration, speed, scalar tangential and normal components of acceleration at the given t of

 $r(t) = 3 \operatorname{sint} i + 2 \operatorname{cost} j - \operatorname{sin} 2t k; t = \frac{\pi}{2}$

Find the equation of the tangent plane and parametric equation for the normal line to the surface $z = 4x^3y^2 + 2y - 2$ at the point (1,-2,10)

Answer any TWO questions

- 16 Evaluate the integral $\int_0^4 \int_y^4 \frac{x}{x^2+y^2} dx dy$ by first reversing the order of integration.
- 17 Evaluate $\int_0^1 \int_{y^2}^1 \int_0^{1-x} x \, dz \, dx \, dy$
- 18 Find the volume of the solid in the first octant bounded by the co-ordinate

Page 2 of 3

(2016)

A

7

8

9

B1A004

A B1A004

- planes and the plane x + y + z = 1PART C (Each question carries 5 Marks) Answer any THREE questions
- 19 Find div F and curl F of $F(x, y, z) = x^2yi + 2y^3zj + 3zk$ 20 Show that $\nabla^2(r^n) = n (n+1)r^{n-2}$ where r = ||xi + yj + zk||21 Find the work done by the force field $F(x, y, z) = (x^2 + xy) i + (y - x^2y)j$ on a particle that moves
 - along the curve $C: x = t, y = \frac{1}{t}$, $1 \le t \le 3$ Evaluate $\int F. dr$ where $F(x, y) = y \ i - x \ j$ along the triangle joining
- the vertices (0,0), (1,0), and (0,1). 23 Determine whether F(x, y) = 4y i + 4xj is a conservative vector field. If

so, find the potential function and the potential energy.

Answer any THREE questions

24	Using Green's theorem evaluate $\oint_C (e^x + y^2) dx + (e^y + x^2) dy$
	where C is the boundary of the region between $y = x^2$ and $y = 2x$.
25	Evaluate the surface integral $\int \int_{\sigma} \frac{x^2 + y^2}{y} dS$ over the surface
	σ represented by the vector valued function
	$r(u,v) = 2cosvi + uj + 2sinvk$, $1 \le u \le 3$, $0 \le v \le \pi$
26	Using Divergence Theorem evaluate $\iint_{\sigma} F.n ds$ where $F(x, y, z) =$
	$(x-z)i + (y-x)j + (2z-y)k$, σ is the surface of the cylindrical
	solid bounded by $x^2 + y^2 = a^2$, $z = 0$, $z = 1$.
27	Determine whether the vector field $F(x, y, z) = 4(x^3 - x)i +$
	$4(y^3 - y)j + 4(z^3 - z)k$ is free of sources and sinks. If it is not,
·	locate them.
28	Using Stokes theorem evaluate $\int_C F dr$ where
	$F(x, y, z) = x^2 i + 4xy^3 j + y^2 xk$,
	C is the rectangle: $0 \le x \le 1, 0 \le y \le 3$ in the plane = y

Page 3 of 3

A

22