

6211_D16_1

(Pages: 3)

Name ...

Reg. No:

FIRST SEMESTER M.TECH. DEGREE EXAMINATION DECEMBER 201

Branch: Electrical & Electronics Engineering

Specialization: Power Electronics

08EE6211 APPLIED MATHEMATICS

Time: 3 hours

Max Marks: 60

Answer all six questions.

Modules 1 to 6: Part 'a' of each question is compulsory and answer either part 'b' or part 'c' of each question.

Q.no.	Module 1			Marks
1.a	Find the Eigen values and Eigen Vectors of the Matrix A =	0	1 2 0	3
	Answer b or c			
b	A Fluid motion is given by $V = (y+z) I + (z+x) J + (x+y) I$ Irrotational? If so find Velocity Potential. Is this motion polynomerosphere.			6
c	Verify Divergence theorem for $F = (x^2 - yz) I + (y^2 - xz)$ taken over the rectangular parallelepiped $0 \le x \le a$, $0 \le y$			6

Q.no.	Module 2	Marks
2.a	Solve y ($\log y$) dx + (x— $\log y$) dy =0	3
	Answer b or c	
b	Find the complete solution of $y''' - 2y' + 2y = x + e^x \cos x$	6
c	$Solvex^2 \frac{d^2 y}{dx^2} + 3x \frac{dy}{dx} + 2y = e^x$	6

Q.no. Module 3 Marks

3.a Find the Fourier Cosine transform of $:\{\text{"x", for } 0 < x < 1 \}$ "2-x" for 1"< x < 2 and "0" for x > 2Answer b or c

b Obtain Fourier Series for the function $f(x) = \pi x$, $0 \le x \le 1$ $\pi (2-x)$ $1 \le x \le 2$ c Find Fourier Series for the expansion of $f(x) = 2x - x^2$ in (0,3) and hence deduce that $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots - \infty = \frac{\pi}{12}$

Q.no.	Module 4	Marks
4.a	Derive Polar Form of Cauchy Riemann Equations?	3
	Answer b or c	
b	Find the conjugate harmonic of $v(r, \theta) = r^2 \cos 2\theta - r \cos \theta + 2$. Show that v is Harmonic?	6
c	Find the Residue of $f(z) = \frac{z^3}{(z-1)^4 (z-2)(z-3)}$ at it's Poles hence evaluate closed	6
	$\int f(z) dz$ where C is the circle I z I = 2.5	

Q.no.	Module 5	Marks
5.a	State and prove Cauchy's Inequality?	4
	Answer b or c	
b	Prove that the function f (z) defined by $f(z) = \frac{x^3(1+i) - y^3(1-i)}{x^2 + y^2}$ ($z \neq 0$) $f(0) = 0$	8
	is continuous and the Cauchy Riemann equations are satisfied at the origin yet $f'(0)$ does not exist .	
c	Find the Laurent's expansion of $f(z) = \frac{(7z-2)}{(z+1)(z+2)}$ in the region $1 < z+1 < 3$	8

Q.no.	Module 6	Marks
6.a	6.a Find the Maximum value of $z = 2 x + 3y$ subject to the constraints: $x + y \le 30$, $y \ge 3$, $0 \le y \le 12$.	
	Answer b or c	
b	Maximize $Z = 2 x_1 + 2 x_2$ subject to the constraints $5 x_1 + 3 x_2 \le 8$, $5 x_1 + 2 x_2 \ge 8$, and $x_1, x_2 \ge 0$	8
c	Maximize $Z = 2x + 3y$ subject to the constraints $2x + 3y \le 7$, $x \le 2$, $y \le 2$ and $x \cdot y > 0$.	8