APJ ABDULKALAM TECHNOLOGICAL UNIVE

08 PALAKKAD CLUSTE

Name:

Reg No:

6221 D16 1

FIRST SEMESTER M.TECH. DEGREE EXAMINATION DEC

Branch: Electrical & Electronics Engineering Specialization: Power, Electronics

08EE6221 SYSTEM DYNAMICS

(Pages: 3)

Time:3 hours

Max. marks: 60

Answer all six questions. Part 'a' of each question is compulsory. Answer either part 'b' or part 'c' of each question

Q.no.

Q.no

Module 1

Marks 3

6

6

1.a Explain eigen values and eigen vectors

Answer b or c

- **b** Obtain the state variable representation of the system represented by transfer function $\frac{C(s)}{R(s)} = \frac{s^2 + 4s + 3}{s^2 + 9s + 20}$ using parallel decomposition method
- c Obtain the time response of the system given by state equation for u(t)=1 for t ≥0

$$\mathbf{\dot{x}} = \begin{bmatrix} 0 & 1 \\ -0.16 & -1 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} \mathbf{u} \ \mathbf{x}(0) = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
$$\mathbf{x} = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x}$$

Module 2

Mar ks

3

6

2a Obtain a state space representation of the system described by

y(k+2)+5y(k+1)+6y(k) = u(k)

y(0) = y(1) = 0

Answer b or c

b Obtain an expression for the discretized form of continuous time state space representation

c Derive an expression for the solution of discrete time state space representation of linear time invariant systems

	Module 3	Marks
Q.no.		
3.a	Write and explain the mathematical definition of Lyapunov stability for continuous time nonlinear systems	3
	Answer b or c	
В	State and explain Lyapunov's stability theorem for linear time invariant continuous time systems	6
c	A non-linear system is described by the equations $\dot{x_1} = -x_1 - x_2^2$	6.
	$\mathbf{x}_2 = -\mathbf{x}_2$	
	By using variable gradient method, investigate the stability of the system.	
Q.no	Module 4	Mar

•		ks
4.a	Explain the concept of controllability and observability for discrete time systems	3
	Answer b or c	
B	State and prove controllability tests for continuous time systems	6

c Explain the determination of observability condition from observable 6 canonical form and diagonal canonical form

Module 5

Q.no

.

•••

•		Mar ks
5.a	Discuss the effect of state feedback on controllability	4
	Answer b or c	
В	Explain the method of designing full order observer for continuous time systems	8
c	Derive Ackerman's formula for the pole placement using state feedback for continuous time systems	8
Q.no.	Module 6	Marks
6.a	Illustrate the method of optimal control using quadratic performance measure? What is its significance?.	4
	Answer b or c	
В	A system is represented by	8
	$\mathbf{X}(t) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mathbf{u}(t).$	-
	If the cost function is $\int_0^\infty (x^2 + u^2) dt$ form the Riccati equation and solve to get the optimal control law.	
c	Explain the design method of a robust PID controller for a temperature	8
	control system with plant having the transfer function of $G(s) = \frac{1}{(s+1)^2}$	
	and with settling time less than 0.8sec .Assume damping ratio=0.8.Use suitable prefilter in the design.	