APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

08 PALAKKAD CLUSTER

(pages: 3)

Q. P. code

Name: Reg No:

SECOND SEMESTER M. TECH. DEGREE EXAMINATION MAY 2016

(POWER ELECTRONICS)

Subject id:08EE6252

DIGITAL CONTROL SYSTEMS

Time:3 hours

Max.marks: 60

ENCON

OTH/

60

Answer all six questions. Part 'a' of each question is compulsory.

Answer either part 'b' or part 'c' of each question

(graph sheets and semi log sheets can be provided.)

Q.no.	Module 1	Marks
1.a	Derive the transfer function of zero order hold circuit	3
	Answer b or c	
b	Explain series programming and parallel programming Solve the difference equation	6
C	y(k+2) - y(k+1) + 0.25y(k) = u(k+2)	6
	where $y(0) = 1$, $y(1) = 2$. The input fijunction $u(k)$ is given by $u(k) = 1$, k=	

0,1,2,...

Q.no.	Module 2		Marks
2.a	Define stability analysis of a discrete time system	м.,	3
	Answer b or c		
b	Explain static error coefficients of a discrete time system,		6

S.F.

Consider the discrete time unity feedback control system (with sampling period T=1s)

whose open loop pulse transform function is given by $G(z) = \frac{k(0.3679z+0.2642)}{(z-0.3679)(z-1)}$

Determine the range of gain *k* for stability by using Jury's stability test. Also obtain the frequency of sustained oscillation.

c Explain the design procedure for a lead compensator based on frequency response approach for discrete time system.

6

33

)		Module 4	Marks
	no.		
	4.a	Obtain an expression of pulse transfer function of a discrete time system from state model.	3
		. Answer b or c	
	b	Obtain the state variable model for the difference equation	6
		y(k+3) + 5y(k+2) + 7y(k+1) + 3y(k) = r(k+1) + 2r(k)	-
	c	Obtain the diagonal canonical form of representation forthe system defined by difference equation	6
		y(k+2) + 3y(k+1) + 2y(k) = 5r(k+1) + 3r(k)	
Q.I	no.	Module 5	Marks
)	5.a	Derive a method for the solution of linear time invariant discrete time state equation]	4
		Answer b or c	
	b	A discrete time system is described by difference equation	8
		y(k+2) + 5y(k+1) + 6y(k) = u(k)	

y(0) = y(1) = 0, T = 1sec.Determine the state transition matrix

С	Explain the method of discretization of continuous time space equation.	8
---	---	---

			and the l		
Q.no.	Module 6	and a second	· · · ·	Marks	
6.a	Explain the concept of controllability and Observability	л. — В л. 14		4	
	Answer b or c	* ,			
b	Consider a digital control system described by input output following difference equation	relation in the fo	orm of	8	
	c(k+2) + 2c(k+1) + c(k) = u(k+1) + u(k) Check if the sytem controllable	is completely sta	ate		
c	Derive Ackermann's formula for pole placement technique discrete time systems.	using state feedb	ack for	8	
	6 1 1				