APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

08 PALAKKAD CLUSTER

(pages: 3)

Name: Reg No:

FIRST SEMESTER M.TECH. DEGREE EXAMINATION DEC 2015

M.Tech- Power Electronics

SYSTEM DYNAMICS

08EE6221

Time:3 hours

Max.marks: 60

6

Answer all six questions. Part 'a' of each question is compulsory.

Answer either part 'b' or part 'c' of each question

Q.no.	Module 1	Marks
1.a	Explain the concept of equilibrium points.	3
	Answer b or c	
b	Obtain solution of the state equation	6
	$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$	
	Where u is a unit step function at t=0	
С	Compute state transition matrix and hence the solution of the system where,	6
	Y""+6y"+11y'+6y=6u	
Q.no.	Module 2	Marks
2.a	Obtain solution of the state equation for a discrete time system.	3
	Answer b or c	
b	Obtain the state transition matrix of the discrete system	6

$$X(k+1) = \begin{bmatrix} 0 & 1 \\ -10 & -7 \end{bmatrix} X(k)$$

C Obtain the discrete time state, output equations and pulse T.F of the system

$$G(s) = \frac{1}{s(s+2)}$$

Q.no.	Module 3	Marks
3.a	State and prove Lyapunov stability theorem for LTI constant time system	3
	Answer b or c	
b	Obtain the Lyapunouv function for the state space system $x^{'} = Ax$, where	6
	$A = \begin{bmatrix} -2 & 1 \\ -5 & 0 \end{bmatrix}$	
c	Using Krasoviski's method, determine the stability of the system $x_1 = -x_1 + 2x_2$ and	6
	$x_2 = -5x_1 - 7x_2$	

1 - E

Q.no.	Module 4	Marks
4.a	Derive and explain the condition for Observablity.	- 3
	Answer b or c	
b	Test for controllablity and observablity of a dc motor having transfer function $\frac{10}{s^2(s+1)(s^2+2s+2)}$	6
С	For the circuit given, formulate the state model with the capacitor voltage v_c and inductor current i_L as state variables with source voltage vs as input and vx as output. Check controllability condition.	6
	$V_{s}(e) \bigcirc \qquad $	
Q.no.	Module 5	Marks
5.a	Explain the concept of state feedback controllers .	4
	Answer b or c	
b	Design a state feedback controller to yield a percentage overshoot of 20.8 and	8

100

setting time of 4 seconds for a plant. $G(s) = \frac{s+4}{(s+1)(s+2)(s+5)}$.

- Consider a system described by the transfer function $\frac{s^2+2s+50}{s(s+4)(s+6)}$ Design
 - a. A full order observer for the system with poles s=-10,-10,-10
 - b. A reduced order observer with poles -10 and -10

Q.no.

b

C

Module 6

6.a Obtain the optimal state regulator problem.

Answer b or c

A continuous time system is given by $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u$ and y=cx. Solve matrix Riccatti equation that results in control signal that minimizes the performance index. $\int_{1}^{5} [y^T(t)y(t) + u^T(t)u(t)] dt$. Solve for C₁= $\begin{bmatrix} 0 & 1 \end{bmatrix}$ and C₂= $\begin{bmatrix} 1 & 0 \end{bmatrix}$ and

complete the results.

c For a second order unity feedback system with open loop transfer function G(s)= $\frac{10}{10} = \frac{10}{10} = \frac{10}$

 $\frac{10}{s(s+a)}$, determine 'a' that will minimise the performance measure $J = \int_{0}^{a} [x^{T}Qx]dt$ when the input is a unit step.

8

8

8

Marks

4