

THIRD SEMESTER B.TECH. [ENGINEERING] (14 SCREME) DEGREE EXAMINATION, NOVEMBER 2015

EN 14 301—ENGINEERING MATHEMATICS—III

(Common for all Branches)

Time: Three Hours

Maximum: 100 Marks

Part A

Answer any eight questions. Each question carries 5 marks.

- 1. Prove that $w = \sin z$ is an entire function. If so find $\frac{dw}{dz}$.
- 2. Show that $e^x (x \cos y y \sin y)$ is a harmonic function.
- 3. Find and graph the image of $-1 \le x \le 1$, $-\pi < y < \pi$ under the mapping $w = e^z$.
- 4. Prove that $\oint_C (z-z_0)^m dz = \begin{cases} 2\pi i & \text{if } m=-1 \\ 0 & \text{if } m\neq -1 \end{cases}$ and integer.
- 5. Using Cauchy's integral formula, evaluate $\int_{C} \frac{z}{(z-1)(z-2)^2} dz$ where C is $|z-2| = \frac{1}{2}$.
- 6. Find the poles and residues of $\frac{9z+i}{z+z^3}$.
- 7. Express v = (1, -2, 5) in \mathbb{R}^3 as a linear combination of the vectors $u_1 = (1, 1, 1), u_2 = (1, 2, 3)$ and $u_3 = (2, -1, 1)$.
- 8. Let W be the subspace of \mathbb{R}^5 generated by the vectors u = (1, 2, 3, -1, 2) and v = (2, 4, 7, 2, -1). Find a basis of the orthogonal complement \mathbb{W}^{\perp} of \mathbb{W} .
- 9. Find the Fourier sine integral representation of $f(t) = e^{-at}$, $0 < t < \infty$, a > 0.
- 10. Find the Fourier cosine transform of the function $f(x) = \begin{cases} \cos x & , & 0 < x < a \\ 0 & , & x > a \end{cases}$ $(8 \times 5 = 40 \text{ marks})$

Turn over

1

Part B

Answer all questions. Each question carries 15 marks.

- 11. (a) Find the analytic function whose real part is $\frac{\sin 2x}{\cosh 2y + \cos 2x}$.
 - (b) Prove that an analytic function with constant modulus is a constant.

Or

- 12. (a) Discuss the transformation $w = z + \frac{1}{z}$. What are its fixed points. What are the critical points? Show that the transformation maps the circle |z| = c into an ellipse. Discuss the case when c = 1.
 - (b) Find the Möbius transformation that maps the points (2, i, -2) into the points (1, i, -1).
- 13. (a) Using Cauchy's residue theorem evaluate $\oint_C \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)^2(z-2)} dz$ where C is the circle |z| = 2.
 - (b) Expand $\frac{1}{z(z-1)(z-2)}$ in the region (i) |z| > 2; (ii) |z| < 1; (iii) 1 < |z| < 2.

Or

- 14. (a) Evaluate $\int_{0}^{2\pi} \frac{\sin \theta}{3 + \cos \theta} d\theta$; (b) Evaluate $\int_{-\infty}^{\infty} \frac{x^2}{\left(x^2 + 4\right)\left(x^2 + 9\right)} dx$.
- 15. (a) Find an orthonormal basis for the subspace spanned by (1,1,1,1),(1,2,4,5) and (1,-3,-4,-2) in \mathbb{R}^4 .
 - (b) Find a, b, c such that (2,1,-1), (a,1,-1) and (b,3,c) form an orthogonal basis of \mathbb{R}^3 .
- 16. (a) Define an inner product space. Let $x = (x_1, x_2)$ and $y = (y_1, y_2)$. Determine whether $\langle x, y \rangle = x_1 y_1 x_1 y_2 x_2 y_1 + x_2 y_2$. Defines an inner product in \mathbb{R}^2 .
 - (b) State Schwartz's Inequality and triangle Inequality. Using the standard inner product verify them for the vectors x = (-2, 3, 1) and y = (3, -4, -1) in \mathbb{R}^3 .

17. (a) Find a Fourier cosine and sine integral representation of the function

$$f(t) = \begin{cases} \cos t &, \quad 0 \le t \le \frac{\pi}{2} \\ 0 &, \quad t > \frac{\pi}{2} \end{cases}$$

(b) If $\mathscr{F}\left\{f(t)\right\} = F(w)$ then show that $\mathscr{F}\left\{f(t-t_0)\right\} = e^{-iwt_0} F(w)$.

Or

18. (a) Find the Fourier integral representation of $f(t) = \begin{cases} 1-t^2 & , & |t| < 1 \\ 0 & , & |t| > 1 \end{cases}$. Hence evaluate

$$\int_{0}^{\infty} \frac{\sin x - x \cos x}{x^{3}} \cos \left(\frac{x}{2}\right) dx.$$

(b) Find the Fourier sine and cosine transform of $e^{-|t|}$.

 $(4 \times 15 = 60 \text{ marks})$