D 90156

(Pages : 3)

FIFTH SEMESTER B.TECH. (ENGINEERING) [09 SCHEME) DEGREE EXAMINATION, NOVEMBER 2015

AI 09 503-CONTROL ENGINEERING

Time : Three Hours

Maximum : 70 Marks

Part A

Answer all questions.

- 1. Distinguish between closed loop and open loop control.
- 2. Define Step signal. Write the mathematical relation.
- 3. List out the advantages of frequency response analysis.
- 4. What is minimum phase system?
- 5. When a system is said to be state observable?

$(5 \times 2 = 10 \text{ marks})$

Part B

Answer any four questions.

6. Consider the network shown. Obtain the Transfer Function between the applied voltage and current.

- 7. List the rules in the Block Diagram Reduction Technique.
- 8. Derive the response for first order system for unit step input.
- 9. Obtain the response of unity feedback system whose open loop transfer function is $G(s) = \frac{4}{s(s+5)}$ when the input is unit step.
- 10. Distinguish between Time domain and frequency domain analysis.

11. Obtain state transition matrix $\dot{\mathbf{X}} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \mathbf{X}, \ \mathbf{X}_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

 $(4 \times 5 = 20 \text{ marks})$

Part C

2

12. (a) Obtain the Force-Voltage and Force-Current analogous circuits for the mechanical system shown. Also write down the equilibrium equations.

(b) Reduce the Block Diagram and obtain the Transfer Function.

3

13. (a) The open loop transfer function of unity feedback system is given by $G(s) = \frac{K}{s(sT+1)}$ where

K and T are positive constant. By what factor should the amplifier gain K be reduced so that the peak overshoot of unity step response of the system is reduced from 75 % to 25 %.

Or

- (b) (i) Explain in detail about Routh Hurwitz Stability criterion.
 - (ii) Construct Routh array and determine the stability of the system represented by the characteristic equation $s^5 + s^4 + 2s^3 + 2s^2 + 3s + 5 = 0$. Comment on the location of roots of characteristic equation.
- 14. (a) The open loop transfer function of a unity feedback system is given by $G(s) = \frac{1}{s (s+1)(2s+1)}$. Sketch the polar plot and determine the Gain Margin and Phase Margin.

Or

- (b) What is Nichols chart? How to do Gain Adjustment using Nichols chart?
- 15. (a) Obtain the Transfer Function matrix for the following system having state model.

Ż=	2 1 1	-1 1 0	0 2 1	X +	-1 1 0	0 0 2	U
Y =	1	10 [°] 01]x.				

Or

(b) A Feedback system is characterized by the closed loop transfer function

 $T(s) = \frac{s^2 + 3s + 3}{s^3 + 2s^2 + 3s + 1}$. Draw a suitable Signal Flow Graph and obtain the state model.

 $(4 \times 10 = 40 \text{ marks})$